浏览全部资源
扫码关注微信
1.南京理工大学 电光学院, 江苏 南京 210094
2.中国科学院 南京天文仪器有限公司, 江苏 南京 210042
[ "刘一鸣(1993-), 男, 江苏徐州人, 2015年于江苏师范大学获得学士学位, 主要从事光干涉测量方面的研究。E-mail:liuyiming17@163.com" ]
[ "陈磊(1964-), 男, 江苏南京人, 博士, 研究员, 博士生导师, 1987年、1990年、1997年于南京理工大学分别获得学士、硕士、博士学位, 主要从事精密光学测试与光电智能化仪器等方面的研究。E-mail:chenlei@njust.edu.com" ]
收稿日期:2017-12-06,
录用日期:2018-1-9,
纸质出版日期:2018-04-25
移动端阅览
刘一鸣, 李金鹏, 陈磊, 等. 采用单位激励影响矩阵数值计算的瑞奇-康芒检测技术[J]. 光学 精密工程, 2018,26(4):771-777.
Yi-ming LIU, Jin-peng LI, Lei CHEN, et al. Ritchey-Common interferometry using unit-excitation influence matrix's numerical calculation method[J]. Optics and precision engineering, 2018, 26(4): 771-777.
刘一鸣, 李金鹏, 陈磊, 等. 采用单位激励影响矩阵数值计算的瑞奇-康芒检测技术[J]. 光学 精密工程, 2018,26(4):771-777. DOI: 10.3788/OPE.20182604.0771.
Yi-ming LIU, Jin-peng LI, Lei CHEN, et al. Ritchey-Common interferometry using unit-excitation influence matrix's numerical calculation method[J]. Optics and precision engineering, 2018, 26(4): 771-777. DOI: 10.3788/OPE.20182604.0771.
在影响矩阵法瑞奇-康芒检验中,恢复被测面形的关键在于构建被检平面面形误差与系统波像差之间的Zernike系数影响矩阵。为了提高瑞奇-康芒法的检测精度,研究了采用单位激励法来精确计算影响矩阵的方法。分别重构平面镜仅包含某一种Zernike波像差下的系统波像差分布,经Zernike拟合得到该种Zernike像差的影响系数向量;由各Zernike像差的影响系数向量组成影响矩阵,然后用最小二乘拟合出被检平面面形。对口径为90 mm的平面镜进行实际检验,在瑞奇角为26.5°与40.6°的情况下进行波前恢复,得到被检平面镜PV值为0.141 3λ,RMS为0.019 4λ。与直接采用平面参考镜检测相比,瑞奇-康芒法检测误差PV值为0.082 8λ,RMS为0.010 9λ。该方法能够精确生成影响矩阵,抑制了影响矩阵法中对大
F
数的依赖,可用于精确恢复平面镜面形。
Calculating the influence matrix between surface error and wavefront aberration is a key step in the Ritchey-Common test. A method that uses unit-excitation operation to calculate the influence matrix with high accuracy was studied in order to improve the precision of the test. It retrieves the system wavefront aberration when the flat mirror concludes only one kind of Zernike aberration
and obtains the influence coefficient vector through Zernike fitting. The influence matrix is formed from the coefficient vectors of all the Zernike aberrations. Least square fitting is then used to reconstruct the surface shape of the tested mirror. After reconstructing the wavefront with Ritchey angles of 26.5° and 40.5°
the test results show PV and RMS values of 0.1413λ and 0.0194λ respectively for the
Φ
90 mm flat mirror. Compared to the results from direct testing
the PV and RMS error in the Ritchey-Common method are 0.0828λ and 0.0109λ
respectively. This method can calculate the influence matrix accurately
eliminate the dependence on the big
F
-number in traditional influence matrix methods and can reconstruct the surface shape with high precision.
刘晓梅. 光学平面的绝对检测[D]. 南京: 南京理工大学, 2004: 1-2. http://cdmd.cnki.com.cn/Article/CDMD-10288-2004108590.htm
LIU X M. Absolute Measurement of Optical Plane [D]. Nanjing: Nanjing University of Science and Technology, 2004: 1-2. (in Chinese)
KIM C J, WYANT J. Subaperture test of a large flat on a fast spherical surface[J]. Opt. Soc. Am., 1981, 71:15-87.
丁凌艳, 戴一帆, 陈善勇.平面子孔径拼接测量研究[J].光学 精密工程, 2008, 16(6):978-985.
DING L Y, DAI Y F, CHEN SH Y. Experiment of sub-aperture stitching interferometry for flat mirror[J].Opt. Precision Eng., 2008, 16(6):978-985.(in Chinese)
LIU Y M, LAWRENCE G N, KOLIOPOULOS C L. Subaperture testing of aspheres with annular zone[J]. Applied Optics, 1988, 27(21):4504-4513.
FLEIG J, DUMAS P, MURPHY P, et al.. An automated subaperture stitching interferometer workstation for spherical and aspherical surfaces[J]. SPIE, 2003, 5188:296-307.
马冬梅, 刘志祥, 马磊, 等.五角棱镜扫描系统中调整误差及制造角差的影响分析[J].光学 精密工程, 2008, 16(12):2517-2523.
MA D M, LIU ZH X, MA L, et al.. Influences of alignment error in pentaprism scanning system and fabrication angle error on measuring accuracy of optical surface[J]. Opt. Precision Eng., 2008, 16(12):2517-2523.(in Chinese)
韩志刚, 陈磊, 高波, 等.基于斜入射的平面度绝对检验方法[J].仪器仪表学报, 2011, 32(3):707-712.
HAN ZH G, CHEN L, GAO B, et al.. Absolute flatness measurement method based on oblique incidence testing[J]. Chinese Journal of Scientific Instrument, 2011, 32(3):707-712.(in Chinese)
SHU K L. Ray-trace analysis of alignment and data reduction methods for the Ritchey-Common test[J]. Applied Optics, 1983, 22(12):1879-1892.
曹根瑞.计算机辅助的瑞奇-康芒检验[J].北京工业学院学报, 1988, 8(4):46-53.
CAO G R. Computer-assisted Ritchey-Common test[J]. Journal of Beijing Institute of Technology, 1988, 8(4):46-53.(in Chinese)
张宗. Φ 1. 1米平面镜的瑞奇-康芒检验方法研究[D]. 南京: 南京理工大学, 2012.
ZHANG Z. Study on the Ritchey-Common Test of Φ 1.1m Flat Mirror [D]. Nanjing: Nanjing University of Science and Technology, 2012. (in Chinese)
朱硕, 张晓辉.高精度瑞奇-康芒检测法研究及测试距离精度影响分析[J].光学学报, 2014, 34(1):121-128.
ZHU SH, ZHANG X H. Study on high precision Ritchey-Common test and analysis of test distance influence[J]. Acta Optica Sinica, 2014, 34(1):121-128.(in Chinese)
朱硕, 张晓辉.误差分离技术在平面镜瑞奇-康芒法检测中的应用[J].光学 精密工程, 2014, 22(1):7-12.
ZHU SH, ZHANG X H. Application of error detaching to Ritchey-Common test for flat mirrors[J]. Opt. Precision Eng., 2014, 22(1):7-12.(in Chinese)
田秀云, 吴时彬, 伍凡, 等.高精度大口径平面镜瑞奇-康芒定量检测方法研究[J].光学技术, 2004, 30(4):486-488.
TIAN X Y, WANG SH B, WU F, et al.. Quantitative test method of Ritchey-Common test in large high precision flat measurements[J]. Optical Technique, 2004, 30(4):486-488.(in Chinese)
袁吕军, 邢娜.大口径光学平面瑞奇-康芒检测技术的研究[J].光学技术, 2007, 33(5):737-744.
YUAN L J, XING N. Study on the Ritchey-Common interferometry for large plano optics[J]. Optical Technique, 2007, 33(5):737-744.(in Chinese)
姜自波, 李新南, 季波.空气垂直温度梯度对长焦镜面检测精度的影响分析[J].光学学报, 2015, 35(10):1012004.
JIANG Z B, LI X N, JI B. Influence analysis of testing accuracy for long focal length mirror by vertical temperature gradient of air[J]. Acta Optica Sinica, 2015, 35(10):1012004.(in Chinese)
GHOSH G. Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals[J]. Optics Communications, 1999, 163(1-3):95-102.
0
浏览量
371
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构