浏览全部资源
扫码关注微信
哈尔滨理工大学 测控技术与仪器黑龙江省高校重点实验室, 黑龙江 哈尔滨 150080
[ "孟晓亮(1988-), 男, 山东潍坊人, 博士研究生, 2011年、2014年于哈尔滨理工大学分别获得学士、硕士学位, 主要从事视觉测量和图像处理方面的研究。E-mail:mengxiaoliang_phd12@hrbust.edu.cn" ]
[ "于晓洋(1962-), 男, 黑龙江哈尔滨人, 教授, 博士生导师, 1984年于哈尔滨电工学院获得学士学位, 1989年、1998年于哈尔滨工业大学分别获得硕士、博士学位, 主要从事视觉测量和图像处理方面的研究。E-mail:yuxiaoyang@hrbust.edu.cn" ]
收稿日期:2017-08-21,
录用日期:2017-9-14,
纸质出版日期:2018-04-25
移动端阅览
孟晓亮, 于晓洋, 吴海滨, 等. 基于三维傅里叶变换的胸腹表面测量[J]. 光学 精密工程, 2018,26(4):778-787.
Xiao-liang MENG, Xiao-yang YU, Hai-bin WU, et al. Measurement of thoraco-abdominal surface using 3D Fourier transform[J]. Optics and precision engineering, 2018, 26(4): 778-787.
孟晓亮, 于晓洋, 吴海滨, 等. 基于三维傅里叶变换的胸腹表面测量[J]. 光学 精密工程, 2018,26(4):778-787. DOI: 10.3788/OPE.20182604.0778.
Xiao-liang MENG, Xiao-yang YU, Hai-bin WU, et al. Measurement of thoraco-abdominal surface using 3D Fourier transform[J]. Optics and precision engineering, 2018, 26(4): 778-787. DOI: 10.3788/OPE.20182604.0778.
鉴于人体胸腹表面三维运动测量在精确放疗等医学领域中的重要应用背景,提出一种三维傅里叶条纹分析与三频时间相位展开相结合的三维傅里叶变换胸腹表面测量方法。投射一幅不同频率三原色余弦条纹组成的图案,每采集一幅图像就能实现相应时刻胸腹表面的三维形状测量;将动态条纹图像序列作为一个三维序列整体,通过三维傅里叶变换并结合三维高斯滤波器提取折叠相位。无干扰时其均方根误差不超过0.005 rad,峰谷值误差不超过0.015 rad,其抗干扰能力高于二维傅里叶条纹分析和其他胸腹表面三维傅里叶条纹分析方法;通过三频时间相位展开方法进行折叠相位展开,在限定条件下绝对相位的误差不超过折叠相位的误差。理论分析和实验结果表明,本文方法能实现人体胸腹表面的三维动态测量。
This paper proposes a 3D Fourier transform measurement method for thoraco-abdominal surface. It has important applications in the 3D measurement of the motion of human thoraco-abdominal surface for accurate radiotherapy in the medical field. The method combines 3D Fourier fringe analysis (3D-FFA) with triple-frequency temporal phase unwrapping. It uses three primary colors that include three cosine fringe patterns with different frequencies to generate a composite pattern
and can achieve the corresponding 3D measurement of the thoracic and abdominal surface by capturing one image. Taking the dynamic fringe pattern sequence as a 3D volume
the wrapped phase can be extracted using 3D Fourier transform combined with a 3D Gaussian filter. The proposed method shows a root mean square (RMS) error less than 0.005 rad for the wrapped phase without interference
a peak-valley (PV) value error less than 0.015 rad
and an anti-interference ability higher than that of the 2D Fourier fringe analysis (2D-FFA) method and other thoracic and abdominal surface 3D-FFA methods. A new triple-frequency temporal phase unwrapping method is used for unwrapping the wrapped phase
and shows an absolute phase error less than the wrapped phase error under limited conditions. Theoretical analysis and experimental results show that the proposed method can achieve 3D dynamic measurement of human thoraco-abdominal surface.
POVŠI K, JEZERŠEK M, MOŽINA J. Real-time 3D visualization of the thoraco-abdominal surface during breathing with body movement and deformation extraction[J]. Physiological Measurement, 2015, 36(7):1497-1516.
FAYAD H, PAN T S, PRADIER O, et al.. Patient specific respiratory motion modeling using a 3D patient's external surface[J]. Medical Physics, 2012, 39(6):3386-3395.
FASSI A, SCHAERER J, FERNANDES M, et al.. Tumor tracking method based on a deformable 4D CT breathing motion model driven by an external surface surrogate[J]. International Journal of Radiation Oncology Biology Physics, 2014, 88(1):182-188.
SU X Y, ZHANG Q C. Dynamic 3-D shape measurement method:A review[J]. Optics and Lasers in Engineering, 2010, 48(2):191-204.
SUN B, ZHU J G, YANG L H, et al.. Sensor for in-motion continuous 3D shape measurement based on dual line-scan cameras[J]. Sensors, 2016, 16(11):1949.
张旭, 李祥, 屠大维.相位高度的显函数模型及其标定[J].光学 精密工程, 2015, 23(8):2384-2392.
ZHANG X, LI X, TU D W. Explicit phase height model and its calibration[J]. Opt. Precision Eng., 2015, 23(8):2384-2392. (in Chinese)
朱新军, 邓耀辉, 唐晨, 等.条纹投影三维形貌测量的变分模态分解相位提取[J].光学 精密工程, 2016, 24(9):2318-2324.
ZHU X J, DENG Y H, TANG CH, et al.. Variational mode decomposition for phase retrieval in fringe projection 3D shape measurement[J]. Opt. Precision Eng., 2016, 24(9):2318-2324. (in Chinese)
ZAPPA E, BUSCA G. Static and dynamic features of Fourier transform profilometry:A review[J]. Optics and Lasers in Engineering, 2012, 50(8):1140-1151.
XUE Q, WANG ZH, HUANG J H, et al.. Improving the measuring accuracy of structured light measurement system[J]. Optical Engineering, 2014, 53(11):112204.
周平, 朱统晶, 刘欣冉, 等.结构光测量中相位误差的过补偿与欠补偿校正[J].光学 精密工程, 2015, 23(1):56-62.
ZHOU P, ZHU T J, LIU X R, et al.. Correction of phase error overcompensation and under-compensation in structured light measurement[J]. Opt. Precision Eng., 2015, 23(1):56-62. (in Chinese)
SUN X M, LIU Y, YU X Y, et al.. Three-dimensional measurement for specular reflection surface based on reflection component separation and priority region filling theory[J]. Sensors, 2017, 17(1):215.
TAKEDA M, INA H, KOBAYASHI S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 1982, 72(1):156-160.
LIU G X, CHEN D X, PENG Y H, et al.. Adaptive multidirectional frequency domain filter for noise removal in wrapped phase patterns[J]. Applied Optics, 2016, 55(22):5953-5959.
CHEN L C, HO H W, NGUYEN X L. Fourier transform profilometry (FTP) using an innovative band-pass filter for accurate 3-D surface reconstruction[J]. Optics and Lasers in Engineering, 2010, 48(2):182-190.
刘乾, 王洋, 吉方, 等.基于频域分析的抗振移相干涉测量[J].光学 精密工程, 2015, 23(1):252-259.
LIU Q, WANG Y, JI F, et al.. Vibration-insensitive phase-shifting interferometry based on frequency domain analysis[J]. Opt. Precision Eng., 2015, 23(1):252-259. (in Chinese)
WU Y CH, CAO Y P, HUANG ZH F, et al.. Improved composite Fourier transform profilometry[J]. Optics & Laser Technology, 2012, 44(7):2037-2042.
ZHANG Z B, ZHONG J G. Applicability analysis of wavelet-transform profilometry[J]. Optics Express, 2013, 21(16):18777-18796.
DA F, DONG F. Windowed Fourier transform profilometry based on improved S-transform[J]. Optics Letters, 2012, 37(17):3561-3563.
朱勇建, 栾竹, 孙建峰, 等.光学干涉图像处理中基于质量权值的离散余弦变换解包裹相位[J].光学学报, 2007, 27(5):848-852.
ZHU Y J, LUAN ZH, SUN J F, et al.. Quality weight based discrete cosine transform phase unwrapping algorithm in optical interferogram processing[J]. Acta Optica Sinica, 2007, 27(5):848-852. (in Chinese)
LUO F, CHEN W J, SU X Y. Eliminating zero spectra in Fourier transform profilometry by application of Hilbert transform[J]. Optics Communications, 2016, 365:76-85.
史红健, 朱飞鹏, 何小元.基于时空域分析影像云纹的低频振动测量[J].光学学报, 2011, 31(4):120-124.
SHI H J, ZHU F P, HE X Y. Low-frequency vibration measurement based on spatiotemporal analysis of shadow moiré[J]. Acta Optica Sinica, 2011, 31(4):120-124. (in Chinese)
ABDUL-RAHMAN H S, GDEISAT M A, BURTON D R, et al.. Three-dimensional Fourier fringe analysis[J]. Optics and Lasers in Engineering, 2008, 46(6):446-455.
ZHANG Q C, HOU ZH L, SU X Y. 3D fringe analysis and phase calculation for the dynamic 3D measurement[J]. AIP Conference Proceedings, 2010, 1236(1):395-400.
REICH C, RITTER R, THESING J. White light heterodyne principle for 3D-measurement[J]. SPIE, 1997, 3100:236-244.
LI B, FU Y J, ZHANG J CH, et al.. A fast three-dimensional shape measurement method based on color phase coding[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(3):1011-1015.
于晓洋, 王洋, 于双, 等.中国剩余定理工程化求解方法及其应用[J].仪器仪表学报, 2014, 35(7):1630-1638.
YU X Y, WANG Y, YU SH, et al.. Engineering solution method and application of Chinese remainder theorem[J]. Chinese Journal of Scientific Instrument, 2014, 35(7):1630-1638. (in Chinese)
0
浏览量
469
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构