浏览全部资源
扫码关注微信
1.宇航动力学国家重点实验室, 陕西 西安 710043
2.西安卫星测控中心, 陕西 西安 710043
[ "李强(1976-), 男, 湖北荆州人, 硕士, 工程师, 1998年于武汉测绘科技大学获得学士学位, 2007年于华中科技大学获得硕士学位, 主要从事卫星测控与在轨管理的研究。E-mail:buffalo126126@126.com" ]
收稿日期:2017-07-24,
录用日期:2017-9-15,
纸质出版日期:2018-04-25
移动端阅览
李强, 张烨, 田凯, 等. 近地卫星陨落期地球反照系数估计[J]. 光学 精密工程, 2018,26(4):796-806.
Qiang LI, Ye ZHANG, Kai TIAN, et al. Estimation of albedo coefficient of Earth during LEO satellite falling[J]. Optics and precision engineering, 2018, 26(4): 796-806.
李强, 张烨, 田凯, 等. 近地卫星陨落期地球反照系数估计[J]. 光学 精密工程, 2018,26(4):796-806. DOI: 10.3788/OPE.20182604.0796.
Qiang LI, Ye ZHANG, Kai TIAN, et al. Estimation of albedo coefficient of Earth during LEO satellite falling[J]. Optics and precision engineering, 2018, 26(4): 796-806. DOI: 10.3788/OPE.20182604.0796.
为了研究地球反照的可见光对太阳电池阵电流在卫星陨落期间的影响程度,进行阵电流的地球反照系数估计。以运行在300 km高度、降交点地方时约10:30AM的某太阳同步轨道近地卫星陨落为例,在讨论卫星轨道半长轴、倾角、光照角、降交点地方时等参数漂移的基础上,重点分析卫星太阳电池阵电流和温度的变化,并对电流进行正弦曲线拟合,进而建立地球反照系数的估计模型,最后用卫星陨落期间的遥测数据进行检验。结果表明,卫星自300 km轨道高度向100 km轨道高度陨落期间,地球反照系数先由0.21逐渐变大,最大值接近0.40,后又逐渐变小至0.20附近;对估计值的二次曲线拟合结果表明,在轨道高度210~270 km这一区间,地球反照对于太阳电池阵的作用最强,对应的地球反照系数极大值约为0.28,作用最强的中心区域可能在250 km轨道高度附近。估计结果可应用于在轨航天器长期管理的遥测诊断、能源估计与预测、器件健康状态评估以及可见光载荷应用等方面。
In order to estimate the albedo coefficient of the Earth
one needs to investigate the change in solar array output current of a low Earth orbit (LEO) satellite caused by the sunlight reflected from the Earth while the satellite is falling to the ground. An LEO satellite orbiting along a sun-synchronous orbit at an altitude of 300 km with a local time of descending node (LTDN) of 10:30 A.M. is selected as the sample. Details of the semi-major axis degradation
inclination perturbance
solar incidence variation
and LTDN shift are discussed
and the solar array output current and temperature are analyzed. Based on the sinusoidal fitting of the solar array output current data
a method for estimating the albedo coefficient of the Earth is developed. The results
validated by telemetry
indicate that when the satellite falls from an altitude of 300 km to 100 km
the albedo coefficient of the Earth increases gradually from 0.21 to 0.40
and then decreases to approximately 0.20. Parabolic fitting of the estimated results indicate that for orbits at altitudes in the range 210-270 km
the albedo coefficient of the Earth results in an enhanced solar array output current
with the maximum occurring for an orbit at an altitude of approximately 250 km when the albedo coefficient of the Earth is approximately 0.28. The results will be helpful for telemetry diagnosis
energy estimation and prediction
and device state of health evaluation for long-term management of satellites for tracking
telemetry
and command
and visible light payload applications.
HOLLINGER D Y, OLLINGER S V, RICHARDSON A D, et al.. Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration[J]. Global Change Biology, 2010, 16(2):696-710.
魏广飞, 李雄耀, 王世杰.地球反照对月表亮温的影响:基于CE-1MRM数据分析[J].中国科学:物理学力学天文学, 2013, 43(11):1457-1464.
WEI G F, LI X Y, WANG SH J. Earthshine effect on lunar brightness temperature:based on the analysis of CE-1 MRM data[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(11):1457-1464. (in Chinese)
LENGOWSKI M, STEINMETZ F, BUCHER N, et al. . Environmental flight acceptance tests of the small Earth observation satellite flying laptop[C]. Proceedings of the 29 th Annual AIAA/USU Conference on Small Satellites, AIAA/USU , 2015: 1-19.
LEONARD B S. A spreadsheet for preliminary analysis of spacecraft power and temperatures[C]. Proceedings of the 30 th Annual AIAA/USU Conference on Small Satellites, AIAA/USU , 2016.
潘晴, 王平阳, 包轶颖, 等.基于反向蒙特卡罗法的飞行器在轨外热流计算[J].上海交通大学学报, 2012, 46(5):750-755.
PAN Q, WANG P Y, BAO Y Y, et al.. On-orbit external heat flux calculation of spacecraft based on reverse Monte Carlo method[J]. Journal of Shanghai Jiaotong University, 2012, 46(5):750-755. (in Chinese)
宁献文, 张加迅, 江海, 等.倾斜轨道六面体卫星极端外热流解析模型[J].宇航学报, 2008, 29(3):754-759.
NING X W, ZHANG J X, JIANG H, et al.. Extreme external heat flux analytical model for inclined-orbit hexahedral satellite[J]. Journal of Astronautics, 2008, 29(3):754-759. (in Chinese)
SPRINGMANN J C. On-orbit calibration of photodiodes for attitude determination[C]. Proceedings of the 27 th Annual AIAA/USU Conference on Small Satellites, AIAA/USU , 2013: 1-12.
THEIL S, APPEL P, SCHLEICHER A. Low cost, good accuracy-attitude determination using magnetometer and simple Sun sensor[C]. Proceedings of 17 th Annual AIAA/USU Conference on Small Satellites, AIAA/USU , 2003: 1-10.
李东, 李玉芳, 金仲和, 等.使用太阳电池阵列的皮卫星姿态确定方法[J].光学 精密工程, 2004, 12(3):87-92.
LI D, LI Y F, JIN ZH H, et al.. Attitude determination of Pico-satellite using body-mounted solar panel array[J]. Opt. Precision Eng., 2004, 12(3):87-92. (in Chinese)
张春明, 贾锦忠, 王立. CCD太阳敏感器大角度入射光能衰减模型[J].空间控制技术与应用, 2009, 35(2):42-45.
ZHANG CH M, JIA J ZH, WANG L. A model about energy attenuation for sunlight incident upon CCD sensors in large angle[J]. Aerospace Control and Application, 2009, 35(2):42-45. (in Chinese)
常建松, 郭建新, 李艳华, 等. IGSO卫星地球敏感器受两极红外辐射波动影响分析[J].航天控制, 2015, 33(5):62-66.
CHANG J S, GUO J X, LI Y H, et al.. The effects of Earth infrared radiance fluctuation at both poles on Earth sensor of IGSO satellite[J]. Aerospace Control, 2015, 33(5):62-66. (in Chinese)
封天明, 李涧青, 高长生, 等.考虑地球敏感器误差的自主导航方法研究[J].上海航天, 2017, 34(2):112-119.
FENG T M, LI J Q, GAO CH SH, et al.. Study on autonomous navigation with error of Earth Sensor[J]. Aerospace Shanghai, 2017, 34(2):112-119. (in Chinese)
张春明, 解永春, 王立, 等.地球反照对星敏感器的影响分析[J].激光与红外, 2012, 42(9):1011-1015.
ZHANG CH M, XIE Y CH, WANG L, et al.. Analysis of influence of earth albedo on star tracker[J]. Laser & Infrared, 2012, 42(9):1011-1015. (in Chinese)
ABDEL-AZIZ Y A, ABDEL-HAMEED A M, KHALIL K I. A new navigation force model for the Earth's albedo and its effects on the orbital motion of an artificial satellite[J]. Applied Mathematics, 2011, 2(7):801-807.
陈润静, 彭碧波, 高凡, 等. GRACE卫星太阳光照与地球反照辐射压力模型的效果分析[J].武汉大学学报·信息科学版, 2013(2):127-130, 243.
CHEN R J, PENG B B, GAO F, et al.. Analysis of solar and Earth albedo radiation pressure models for GRACE on their performance[J]. Geomatics and Information Science of Wuhan University, 2013(2):127-130, 243. (in Chinese)
WIELICKI B A, WONG T, LOEB N, et al.. Changes in Earth's albedo measured by satellite[J]. Science, 2005, 308(5723):825.
STEPHENS G L, O'BRIEN D, WEBSTER P J, et al.. The albedo of Earth[J]. Reviews of Geophysics, 2015, 53(1):141-163.
郝培杰, 徐冰霖, 卢晓东, 等.卫星单粒子闩锁异常的诊断与自动报警[J].飞行器测控学报, 2014, 33(6):512-517.
HAO P J, XU B L, LU X D, et al.. Diagnosis and automatic alarm of single event latch-up anomaly of satellites[J]. Journal of Spacecraft TT & C Technology, 2014, 33(6):512-517. (in Chinese)
院小雪, 庞寿成, 杨东升, 等. "新技术验证一号"卫星在轨污染探测数据分析[J].宇航学报, 2016, 37(2):240-244.
YUAN X X, PANG SH CH, YANG D SH, et al.. Space contamination effect analysis of on-orbit detection data for "XY-1" satellite[J]. Journal of Astronautics, 2016, 37(2):240-244. (in Chinese)
DENNISON J R. Dynamic interplay between spacecraft charging, space environment interactions, and evolving materials[J]. IEEE Transactions on Plasma Science, 2011, 43(9):2933-2940.
王安, 秦勃, 徐晓慧, 等.空间环境对超低轨道卫星轨迹规划的影响[J].飞行器测控学报, 2016, 35(4):286-293.
WANG A, QIN B, XU X H, et al.. Influence of space environment on trajectory planning for very low earth orbit satellites[J]. Journal of Spacecraft TT & C Technology, 2016, 35(4):286-293. (in Chinese)
BRENNAN M P, ABRAMASE A L, ANDREWS R W, et al.. Effects of spectral albedo on solar photovoltaic devices[J]. Solar Energy Materials and Solar Cells, 2014, 124:111-116.
李小飞, 乔明, 陈琦.地球反照对低轨卫星太阳电池阵的影响分析[J].航天器工程, 2014, 23(3):62-66.
LI X F, QIAO M, CHEN Q. Effects of the Earth radiation on solar array for LEO satellite-to-earth[J]. Spacecraft Engineering, 2014, 23(3):62-66. (in Chinese)
李强, 洪涛, 林乐天, 等.一种晨昏轨道卫星地球反照系数估计方法[J].宇航学报, 2016, 37(1):68-73.
LI Q, HONG T, LIN L T, et al.. Earth albedo coefficient estimation for dawn-dusk orbit satellite[J]. Journal of Astronautics, 2016, 37(1):68-73. (in Chinese)
王甜甜, 彭方汉, 耿利寅, 等.预估太阳电池阵在轨最高温度的经验公式[J].航天器环境工程, 2014, 31(1):68-73.
WANG T T, PENG F H, GENG L Y, et al.. An empirical formula to predict the highest temperature of on-orbit solar array[J]. Spacecraft Environment Engineering, 2014, 31(1):68-73. (in Chinese)
彭梅, 王巍巍, 吴静, 等.太阳同步轨道卫星太阳电池阵衰减因子研究[J].航天器工程, 2011, 20(5):61-67.
PENG M, WANG W W, WU J, et al.. Study on attenuation factor of Si solar array for satellite in sun synchronous orbit[J]. Spacecraft Engineering, 2011, 20(5):61-67. (in Chinese)
李丽光, 王宏博, 刘宁微, 等. 1960-2013年辽宁省城市霾日时空特征分析[J].气象与环境学报, 2015, 31(6):115-122.
LI L G, WANG H B, LIU N W, et al.. Spatial and temporal distribution of haze day from 1960 to 2013 in urban areas of Liaoning province[J]. Journal of Meteorology and Environment, 2015, 31(6):115-122. (in Chinese)
卢玉成, 唐荣桂, 王一帆, 等.利用数据规律分析法巧解数学问题[J].高等数学研究, 2016, 19(4):40-43.
LU Y CH, TANG R G, WANG Y F, et al.. Solving math problems using data rule analysis method[J]. Studies in College Mathematics, 2016, 19(4):40-43. (in Chinese)
穆肯德·R·帕特尔. 航天器电源系统[M]. 韩波, 陈琦, 崔晓婷, 译. 北京: 中国宇航出版社, 2010: 161-162.
PATEL M R. Spacecraft Power Systems [M]. HAN B, CHEN Q, CUI X T, trans.. Beijing: China Astronautics Press, 2010: 161-162. (in Chinese)
卞洁玉, 猪狩真一, 周泓, 等.封装标准太阳电池性能及其与国际标准一致性的评价[J].光学 精密工程, 2016, 24(3):491-501.
BIAN J Y, SANEKZU I, ZHOU H, et al.. Characteristics of various packaged reference photovoltaic devices and their conformities to international photovoltaic standards[J]. Opt. Precision Eng., 2016, 24(3):491-501. (in Chinese)
雷刚, 曹佳晔, 王艺帆.空间用太阳电池红外干涉截止滤光技术研究[J].上海航天, 2015, 32(4):59-62.
LEI G, CAO J Y, WANG Y F. Research of IRR for space solar cell[J]. Aerospace Shanghai, 2015, 32(4):59-62. (in Chinese)
WOIKE W T. Radiation-induced power degradation for GaAs/Ge solar arrays[C]. Proceedings of the 6 th Annual AIAA/USU Conference on Small Satellites, AIAA/USU , 1994: 1-13.
张忠卫, 陆剑峰, 池卫英, 等.砷化镓太阳电池技术的进展与前景[J].上海航天, 2003, 20(3):33-38.
ZHANG ZH W, LU J F, CHI W Y, et al.. Technique development and prospects analysis of GaAs solar cell[J]. Aerospace Shanghai, 2003, 20(3):33-38. (in Chinese)
0
浏览量
427
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构