浏览全部资源
扫码关注微信
1.中国科学院 南京天文光学技术研究所, 江苏 南京 210042
2.中国科学院 天文光学技术重点实验室, 江苏 南京 210042
3.中国科学院大学, 北京 100039
[ "胡守伟(1987-), 男, 山东临沂人, 博士研究生, 2011年于中国海洋大学获得学士学位, 2014年于中国科学院南京天文光学技术研究所获得硕士学位, 要从事天文技术与方法方面的研究。E-mail:swhu@niaot.ac.cn" ]
[ "宋晓莉(1978-), 女, 河南平西人, 副研究员, 2001年于安徽理工大学获得硕士学位, 2012年于中国科学院南京天文光学技术研究所获得博士学位, 主要从事大型天文望远镜机架驱动、控制方面的研究" ]
收稿日期:2017-09-01,
录用日期:2017-10-15,
纸质出版日期:2018-04-25
移动端阅览
胡守伟, 宋晓莉, 张惠. 巨型望远镜方位轴系的集成系统[J]. 光学 精密工程, 2018,26(4):850-856.
Shou-wei HU, Xiao-li SONG, Hui ZHANG. Integrated system of azimuth structure for extremely large telescopes[J]. Optics and precision engineering, 2018, 26(4): 850-856.
胡守伟, 宋晓莉, 张惠. 巨型望远镜方位轴系的集成系统[J]. 光学 精密工程, 2018,26(4):850-856. DOI: 10.3788/OPE.20182604.0850.
Shou-wei HU, Xiao-li SONG, Hui ZHANG. Integrated system of azimuth structure for extremely large telescopes[J]. Optics and precision engineering, 2018, 26(4): 850-856. DOI: 10.3788/OPE.20182604.0850.
为了解决巨型望远镜潜在的结构变形对方位轴系支撑和精密驱动的影响,基于组合轴承和驱动车载的概念,提出了一种集成具有轴承及驱动两个功能的机械装置。此套机械装置采用了静液压油垫和直接驱动技术。直接驱动和液压油垫组合安装在承载机构上,可以减小电机间隙变化以便提高驱动系统的效率,此机械装置包含一套运动副连接,该连接允许底部静液压油垫与滑动导轨紧密贴合而上部连接到方位轴移动结构上(就方位轴而言),由此机械装置在运行时只会受到底部滑动轨道平整度的影响而不受上部移动结构大尺度变形的影响。之后通过ANSYS对机械装置进行了静力学仿真,以验证模型的准确性。分析结果证明:系统在设置运动副连接和未设置运动副连接两种情况下,施加
Z
轴方向力矩时,关注点的位移由14.3
μ
m减小为0.85
μ
m;施加
X
轴方向力矩时,关注点的位移由12.9
μ
m减小为1.26
μ
m,运动副连接层可以显著吸收望远镜方位轴移动结构变形引起的力矩,从而不会将该作用力矩强加给静液压油垫和驱动系统。该项设计为巨型望远镜高精度轴系和精密驱动的研制提供了可靠的设计依据和技术支持。
In order to reconcile large deformations of the azimuth structure for the Extremely Large Telescope(ELT)
an innovative mechanism based on hydrostatic bearings and linear drives was established and it combined both the bearing and drive functions. Placed motors close to hydrostatic bearings allowed a fairly constant air-gap to be maintained despite the dimensions of the structure. This allowed the motor to be designed with a relative small air-gap and consequently higher efficiency for a defined motor dimension. The connection of each of the frames to the mobile structure was through a kinematical connection
such that the lower part was properly positioned with respect to the track
while the upper part was connected to the azimuth structure (in the case of the azimuth mechanism). Thus the mechanism was only affected in performance by the small-scale deformation of the track and not by large-scale deformation of the structure. Then
the static analysis of the mechanism was simulated by ANSYS and verified its mechanical model. Analysis results indicate that the displacement of the point of concern decreases from 14.3
μ
m to 0.85
μ
m when the
Z
-axis moment is applied in both cases of the mechanism with kinematical joint and without kinematical joint. When the
X
-axis moment is applied
the displacement of the point of interest decreases from 12.9
μ
m to 1.26
μ
m. The design can offer a reliable guidance and advanced technique paths for developing the high precision azimuth shafting and precision actuation of the extremely large telescope.
QUATTRI M, DIMICHINO F, MARCHIORI G, et al.. VLT 8-m unit telescope main structure:design solutions and performance calculation[J]. SPIE, 1994, 2199:986-996.
European Southern Observatory. The VLT White Book[M]. ESO, 1998.
RAYBOULD K, GILLETT P E, HATTON P, et al.. Gemini telescope structure design[J]. SPIE, 1994, 2199:376-393.
MIYAWAKI K, ITOH N, SUGIYAMA R, et al.. Mechanical structure for the SUBARU Telescope[J]. SPIE, 1994, 2199:754-761.
MEDWADOWSKI S J. Structure of the keck telescope-An overview[C]. Proceedings of the International Symposium on Large Telescopes Japanese National Large Telescope and Related Engineering Developments, Springer, 1989:33-43.
张景旭.地基大口径望远镜系统结构技术综述[J].中国光学, 2012, 5(4):327-336.
ZHANG J X. Overview of structure technologies of large aperture ground-based telescopes[J]. Chinese Optics, 2012, 5(4):327-336. (in Chinese)
王槐, 代霜, 张景旭.大型地平式望远镜的方位轴系支撑结构[J].光学 精密工程, 2012, 20(7):1509-1516.
WANG H, DAI SH, ZHANG J X. Azimuth shafting bearing structure in a large Alt-azimuth telescope[J]. Opt. Precision Eng., 2012, 20(7):1509-1516. (in Chinese)
SZETO K, ROBERTS S, GEDIG M, et al.. TMT telescope structure system:design and development[J]. SPIE, 2006, 6267:62672Q.
TSANG D, AUSTIN G, GEDIG M, et al.. TMT telescope structure system:seismic analysis and design[J]. SPIE, 2008, 7012:70124J.
NELSON J, SANDERS G H. The status of the thirty meter telescope project[J]. SPIE, 2008, 7012:70121A.
USUDA T, EZAKI Y, KAWAGUCHI N, et al.. Preliminary design study of the TMT Telescope structure system:overview[J]. SPIE, 2014, 9145:91452F.
JOHNS M, MCCARTHY P, RAYBOULD K, et al.. Giant Magellan telescope:overview[J]. SPIE, 2012, 8444:84441H.
BERNSTEIN R A, MCCARTHY P J, BIGELOW B C, et al.. Overview and status of the giant Magellan telescope project[J]. SPIE, 2014, 9145:91451C.
MARCHIORI G, BUSATTA A, GHEDIN L, et al.. The E-ELT project:the telescope main structure detailed design study[J]. SPIE, 2012, 8444:84440O.
GÍMEZ C, AVILÉS A, BILBAO A, et al.. E-ELT seismic devices analysis and prototype testing[J]. SPIE, 2012, 8449:844918.
SU D G, WANG Y N, CUI X Q. A configuration for future giant telescope[J]. Chinese Astronomy and Astrophysics, 2004, 28(3):356-366.
LI G P, YANG D H. Preliminary structure design and analysis of the Chinese Future Giant Telescope[J]. SPIE, 2004, 5495:204-215.
GUNNELS S. The Giant Magellan Telescope (GMT):hydrostatic constraints[J]. SPIE, 2010, 7733:77334Z.
The E-ELT Project Office. The E-ELT Construction Proposal[M]. München:European Southern Observatory, 2011.
TMT Observatory Corporation. TMT Construction Proposal[M]. Washington:TMT Observatory, 2007.
0
浏览量
684
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构