浏览全部资源
扫码关注微信
1.中国电子科技集团公司第三十八研究所, 安徽 合肥 230088
2.南京理工大学 机械工程学院, 江苏 南京 210094
[ "周织建(1970-), 男, 安徽黄山人, 博士, 工程师, 2016年于南京理工大学获得博士学位, 目前主要从事高集成度小型化雷达的热设计和环控技术研究。E-mail:zhouzhijian2011@163.com" ]
收稿日期:2017-09-05,
录用日期:2017-11-1,
纸质出版日期:2018-04-25
移动端阅览
周织建, 洪肇斌. 共面薄膜电极表面放电冷却技术[J]. 光学 精密工程, 2018,26(4):866-874.
Zhi-jian ZHOU, Zhao-bin HONG. Electrocooling technology based on surface discharge of thin coplanar flat electrodes[J]. Optics and precision engineering, 2018, 26(4): 866-874.
周织建, 洪肇斌. 共面薄膜电极表面放电冷却技术[J]. 光学 精密工程, 2018,26(4):866-874. DOI: 10.3788/OPE.20182604.0866.
Zhi-jian ZHOU, Zhao-bin HONG. Electrocooling technology based on surface discharge of thin coplanar flat electrodes[J]. Optics and precision engineering, 2018, 26(4): 866-874. DOI: 10.3788/OPE.20182604.0866.
为研究一种可用于雷达领域的新型冷却技术,本文研究了高电压下共面薄膜电极之间的DC表面放电现象。设计制作了一系列具有不同参数且带有一个阳极针尖以及两个对称布置阴极的样机,通过改变基底表面粗糙度以及不同的结构参数(如凹槽深度、凹槽宽度以及阴极长度等)进行实验测试。结果表明:主要受到基底表面离子迁移率的影响,凹槽深度对于共面薄膜平面电极的表面放电现象影响最大;表面放电的电流稳定性随着深度的增加而增加;而放电起始电压则随着深度的增加而减小;离子与平面基底之间的流体阻力影响相对较小。共面薄膜电极表面放电的研究对于推动电冷却技术在雷达技术领域的应用具有重要意义。
The DC surface high voltage discharge of thin coplanar flat electrodes was experimentally analyzed for the purpose of studying a cooling technology in radar filed. A series of samples including two symmetrical cathodes and one anode with a sharp tip were built to evaluate the effects on surface discharge of the separation between two thin coplanar flat electrodes and the flow resistance between ions and a flat substrate. A series of tests have been done for the surface discharge characteristics by changing surface roughness and structural parameters such as cavity depth
gap width and cathode length. The main results show that the cavity depth is the most important structural parameter
since it has the greatest effect on the mobility of neutral molecules in the space between the thin coplanar flat electrodes. The space is a key role for collisions to generate the surface discharge
which is affected by ion mobility. The stability of surface discharge is in direct proportion to gap depth
but the firing voltage decreases with the increase of the depth. Besides
the flow resistance between ions and flat substrate has relatively less effect on the surface discharge. The research of the surface discharge of thin coplanar flat electrodes offers the promise of electrocooling application in radar field in the future.
梅启元.热管在雷达散热上应用的可行性研究[J].电子机械工程, 2007, 23(1):17-19.
MEI Q Y. Study on the feasibility of application of heat pipe in radar system[J]. Electro-Mechanical Engineering, 2007, 23(1):17-19. (in Chinese)
王从思, 宋正梅, 康明魁, 等.微通道冷板在有源相控阵天线上的应用[J].电子机械工程, 2013, 29(1):1-4, 13.
WANG C S, SONG ZH M, KANG M K, et al.. Application of micro-channel cold plate to active phased array antenna[J]. Electro-Mechanical Engineering, 2013, 29(1):1-4, 13. (in Chinese)
孔祥举.真空管雷达发射机热控技术研究[J].电子机械工程, 2007, 23(5):17-20.
KONG X J. Thermal control technology of vacuum tube radar transmitter[J]. Electro-Mechanical Engineering, 2007, 23(5):17-20. (in Chinese)
陈德生, 魏延涛, 常越, 等.新一代天气雷达系统热设计与技术分析[J].电子科技, 2012, 25(7):121-124.
CHEN D SH, WEI Y T, CHANG Y, et al.. Thermal design and analysis technique for the new generation weather radar system[J]. Electronic Science and Technology, 2012, 25(7):121-124. (in Chinese)
张辉. 某机载雷达风冷机箱设计研究[D]. 南京: 南京理工大学, 2013.
ZHANG H. Study on air-cooled enclosure of an aero radar [D]. Nanjing: Nanjing University of Science and Technology, 2013. (in Chinese)
陈奎, 帅立国, 钟剑锋, 等.基于现代设计方法的雷达风冷系统设计[J].电子机械工程, 2016, 32(1):20-23.
CHEN K, SHUAI L G, ZHONG J F, et al.. Design of radar air-cooling system based on modern design method[J]. Electro-Mechanical Engineering, 2016, 32(1):20-23. (in Chinese)
陈立恒, 吴清文, 罗志涛, 等.空间相机电子设备热控系统设计[J].光学 精密工程, 2009, 17(9):2145-2152.
CHEN L H, WU Q W, LUO ZH T, et al.. Design for thermal control system of electronic equipment in space camera[J]. Opt. Precision Eng., 2009, 17(9):2145-2152. (in Chinese)
张旭升, 郭亮, 贾卓杭, 等.微米行程微膨胀型热开关热特性的仿真与试验[J].光学 精密工程, 2016, 24(10):2442-2448.
ZHANG X SH, GUO L, JIA ZH H, et al.. Simulation and experiment of thermal properties for micro-expansion type heat switch with micron stroke[J]. Opt. Precision Eng., 2016, 24(10):2442-2448. (in Chinese)
郭亮, 吴清文, 黄勇, 等.热管理技术在紫外成像光谱仪热控制中的应用[J].光学 精密工程, 2014, 22(7):1877-1885.
GUO L, WU Q W, HUANG Y, et al.. Application of thermal management technique to thermal control for ultraviolet imaging spectrometers[J]. Opt. Precision Eng., 2014, 22(7):1877-1885. (in Chinese)
罗志涛, 徐抒岩, 陈立恒.大功率焦平面器件的热控制[J].光学 精密工程, 2008, 16(11):2187-2192.
LUO ZH T, XU SH Y, CHEN L H. Thermal control of high-power focal plane apparatus[J]. Opt. Precision Eng., 2008, 16(11):2187-2192. (in Chinese)
KIBLER K G, CARTER JR H G. Electrocooling in gases[J]. Journal of Applied Physics, 1974, 45(10):4436-4440.
MOREAU E, LEGER L, TOUCHARD G. Effect of a DC surface-corona discharge on a flat plate boundary layer for air flow velocity up to 25 m/s[J]. Journal of Electrostatics, 2006, 64(3-4):215-225.
MALCZYNSKI G W, SCHROEDER T. An ion-drag air mass-flow sensor for automotive applications[J]. IEEE Transactions on Industry Applications, 1992, 28(2):304-309.
DARABI J, OHADI M M, DEVOE D. An electrohydrodynamic polarization micropump for electronic cooling[J]. Journal of Microelectromechanical Systems, 2001, 10(1):98-106.
MOREAU E. Airflow control by non-thermal plasma actuators[J]. Journal of Physics D:Applied Physics, 2007, 40(3):605-636.
LÉGER L, MOREAU E, ARTANA G, et al.. Influence of a DC corona discharge on the airflow along an inclined flat plate[J]. Journal of Electrostatics, 2001, 51-52:300-306.
LEGER L, MOREAU E, TOUCHARD G. Electrohydrodynamic airflow control along a flat plate by a DC surface corona discharge-velocity profile and wall pressure measurements[C]. Proceedings of the 1st Flow Control Conference St , AIAA , 2002: 2002.
MAGNIER P, HONG D P, LEROY-CHESNEAU A, et al.. A DC corona discharge on a flat plate to induce air movement[J]. Journal of Electrostatics, 2007, 65(10-11):655-659.
ROTH J R, SHERMAN D M, WILKINSON S P. Electrohydrodynamic flow control with a glow-discharge surface plasma[J]. AIAA Journal, 2000, 38(7):1166-1172.
RAN H Y, ZHANG Y, HONER K. Multi-stage electrohydrodynamic fluid accelerator apparatus: US, 20090321056[P]. 2009-12-31.
FOROUGHI P, ZHAO Y, LAWLER J, et al. . Development of electrohydrodynamic (EHD) micropumps for cryogenic applications[C]. Proceedings of Space Technology and Applications International Forum , American Institute of Physics , 2005: 46-54.
BOEUF J P, PITCHFORD L C. Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge[J]. Journal of Applied Physics, 2005, 97(10):103307.
MELCHER J R. Electrohydrodynamic and magnetohydrodynamic nonlinear surface waves[J]. Physics of Fluids, 1962, 5(9):1037-1043.
刘学忠, 高超, 邓显波, 等.高速气流对绝缘子表面放电特征的影响[J].电工技术学报, 2010, 25(12):16-21.
LIU X ZH, GAO CH, DENG X B, et al.. Influence of high-speed airflow on surface discharge characteristics of insulator[J]. Transactions of China Electrotechnical Society, 2010, 25(12):16-21. (in Chinese)
易爱平, 刘晶儒, 于力, 等.多通道表面放电光泵浦源触发特性研究[J].强激光与粒子束, 2006, 18(7):1076-1080.
YI A P, LIU J R, YU L, et al.. Trigger characteristic study on optical pumping source with multichannel surface discharge[J]. High Power Laser and Particle Beams, 2006, 18(7):1076-1080. (in Chinese)
SCHLICHTING H. Boundary Layer Theory[M]. 6th ed. New York:McGraw-Hill, 1968.
GALLO C F. Corona-a brief status report[J]. IEEE Transactions on Industry Applications, 1977, IA-13(6):550-557.
0
浏览量
623
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构