浏览全部资源
扫码关注微信
大连理工大学 工业装备结构分析国家重点实验室, 辽宁 大连 116024
[ "高仁璟(1964-), 女, 山东招远人, 博士, 教授, 博士生导师, 2011年于大连理工大学获得博士学位, 主要从事左手材料、生物传感器、电路与系统等方面的研究。E-mail:renjing@dlut.edu.cn" ]
[ "李明丽(1989-), 女, 山东诸城人, 博士研究生, 2013年于聊城大学获得学士学位, 主要从事基于多稳态结构的俘能器设计、压电驱动等。E-mail:1096387147@qq.com" ]
赵剑, E-mail:jzhao@diut.edu.cnZHAO Jian, E-mail:jzhao@diut.edu.cn
刘书田, E-mail:stliu@diut.edu.cnLIU Shu-tian, E-mail:jzhao@diut.edu.cn
收稿日期:2017-07-25,
录用日期:2017-9-9,
纸质出版日期:2018-04-25
移动端阅览
高仁璟, 李明丽, 王奇, 等. 局部加强体对预压双稳态结构跳转力学特征的影响分析[J]. 光学 精密工程, 2018,26(4):884-893.
Ren-jing GAO, Ming-li LI, Qi WANG, et al. Influences of local reinforcements on the snap-through characteristics of pre-compressed bistable structures[J]. Optics and precision engineering, 2018, 26(4): 884-893.
高仁璟, 李明丽, 王奇, 等. 局部加强体对预压双稳态结构跳转力学特征的影响分析[J]. 光学 精密工程, 2018,26(4):884-893. DOI: 10.3788/OPE.20182604.0884.
Ren-jing GAO, Ming-li LI, Qi WANG, et al. Influences of local reinforcements on the snap-through characteristics of pre-compressed bistable structures[J]. Optics and precision engineering, 2018, 26(4): 884-893. DOI: 10.3788/OPE.20182604.0884.
基于轴向挤压后屈曲模态的双稳态结构,其跳转力、保持力和跳转行程等双稳态特征与预应力分布和后屈曲模态密切相关,使得难以通过仅调整预压缩量来实现特定双稳态指标的设计。本文提出引入局部加强体调控预压双稳态梁临界屈曲载荷、应力分布及跳转特征的方法,建立了具有对称局部加强体的预压双稳态梁跳转分析模型,分析了预应力、加强体尺寸参数和位置对屈曲临界载荷、跳转力和行程的影响规律。结果表明:局部加强体不影响原结构跳转力和保持力相等的特征;与尺寸参数相比加强体位置参数对跳转力有较大影响,随着位置的变化,跳转力存在由大变小再变大的变化过程,且调控同行程双稳态梁跳转力的幅度可达17.04%;跳转行程主要依赖于局部加强体的刚度和所承受的预应力。
For the bistable structures formed through compressing the strait beams into post-buckling modes
their bistable characteristics such as snap-through/maintain forces and snap-through distance are deeply related to the pre-stress distribution and the buckling mode. Thus
it is difficult to achieve a required specific bistable characteristic through only adjusting the pre-stress load. For this reason
one effective method was proposed for adjusting the critical buckling load and snap-through characteristics by introducing local reinforcements to regulate stress distribution during the snap-through procedure. Then
the snap-through analyzing model was established for the pre-compression bistable beam with symmetrical local reinforcements. Influences of the pre-stress
reinforcement size parameters and their position on buckling critical load
snap-through force and the stroke were analyzed. The results show that the characteristic of equal snapping and maintaining force is not affected by added local reinforcements; compared with size parameters of the reinforcement
its position parameter plays a more important role in determining the snapping force
and the snapping force increases firstly and then decreases with the position changed. The snapping force can be regulated up to 17.04% without changing the stroke; the stroke is deeply related with the reinforcement stiffness and the pre-stress.
GO J S, CHO Y H, KWAK B M, et al.. Snapping microswitches with adjustable acceleration threshold[J]. Sensors and Actuators A:Physical, 1996, 54(1-3):579-583.
WANG D A, PHAM H T, HSIEH Y H. Dynamical switching of an electromagnetically driven compliant bistable mechanism[J]. Sensors and Actuators A:Physical, 2009, 149(1):143-151.
KIM H, JANG Y H, KIM Y K, et al.. MEMS acceleration switch with bi-directionally tunable threshold[J]. Sensors and Actuators A:Physical, 2014, 208:120-129.
FU SH, DING G F, WANG H, et al.. Design and fabrication of a magnetic bi-stable electromagnetic MEMS relay[J]. Microelectronics Journal, 2007, 38(4-5):556-563.
STAAB M, SCHLAAK H F. Novel electrothermally actuated magnetostatic bistable microrelay for telecommunication applications[C]. Proceedings of the 2011 IEEE 24 th International Conference on Micro Electro Mechanical Systems , IEEE , 2011: 1261-1264.
QIU J, LANG J H, SLOCUM A H, et al.. A bulk-micromachined bistable relay with U-shaped thermal actuators[J]. Journal of Microelectromechanical Systems, 2005, 14(5):1099-1109.
ENIKOV E T, KEDAR S S, LAZAROV K V. Analytical model for analysis and design of V-shaped thermal microactuators[J]. Journal of Microelectromechanical Systems, 2005, 14(4):788-798.
GERSON Y, KRYLOV S, ILIC B, et al.. Design considerations of a large-displacement multistable micro actuator with serially connected bistable elements[J]. Finite Elements in Analysis and Design, 2012, 49(1):58-69.
GERSON Y, KRYLOV S, ILIC B. Electrothermal bistability tuning in a large displacement micro actuator[J]. Journal of Micromechanics and Microengineering, 2010, 20(11):112001.
CHIACCHIARI S, ROMEO F, MCFARLAND D M, et al.. Vibration energy harvesting from impulsive excitations via a bistable nonlinear attachment[J]. International Journal of Non-Linear Mechanics, 2017, 94:84-97.
ANDÒ B, BAGLIO S, BULSARA A R, et al.. Investigation of a nonlinear energy harvester[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(5):1067-1075.
ZOU H X, ZHANG W M, LI W B, et al.. A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach[J]. Applied Physics Letters, 2017, 110(16):163904.
WU Y B, DING G F, ZHANG C CH, et al.. Design and implementation of a bistable microcantilever actuator for magnetostatic latching relay[J]. Microelectronics Journal, 2010, 41(6):325-330.
LUHARUKA R, HESKETH P J. A bistable electromagnetically actuated rotary gate microvalve[J]. Journal of Micromechanics and Microengineering, 2008, 18(3):035015.
QIU J, LANG J H, SLOCUM A H. A curved-beam bistable mechanism[J]. Journal of Microelectromechanical Systems, 2004, 13(2):137-146.
HUANG H W, LEE F W, YANG Y J J. Design criteria for a push-on push-off MEMS bistable device[J]. Journal of Microelectromechanical Systems, 2016, 25(5):900-908.
PHAM H T, WANG D A. A constant-force bistable mechanism for force regulation and overload protection[J]. Mechanism and Machine Theory, 2011, 46(7):899-909.
VANGBO M. An analytical analysis of a compressed bistable buckled beam[J]. Sensors and Actuators A:Physical, 1998, 69(3):212-216.
VANGBO M, BÄCKLUND Y. A lateral symmetrically bistable buckled beam[J]. Journal of Micromechanics and Microengineering, 1998, 8(1):29-32.
赵剑, 贾建援, 王洪喜, 等.双稳态屈曲梁的非线性跳跃特性研究[J].西安电子科技大学学报(自然科学版), 2007, 34(3):458-462.
ZHAO J, JIA J Y, WANG H X, et al.. Nonlinear snap-through characteristic of a compressed bi-stable buckled beam[J]. Journal of Xidian University, 2007, 34(3):458-462. (in Chinese)
SAIF M T A, MACDONALD N C. A millinewton microloading device[J]. Sensors and Actuators A:Physical, 1996, 52(1-3):65-75.
FANG W, WICKERT J A. Post buckling of micromachined beams[J]. Journal of Micromechanics and Microengineering, 1994, 4(3):116-122.
CAZOTTES P, FERNANDES A, POUGET J, et al.. Bistable buckled beam:modeling of actuating force and experimental validations[J]. Journal of Mechanical Design, 2009, 131(10):101001.
HUANG Y, ZHAO J, LIU SH T. Design optimization of segment-reinforced bistable mechanisms exhibiting adjustable snapping behavior[J]. Sensors and Actuators A:Physical, 2016, 252:7-15.
王勖成.有限单元法[M].北京:清华大学出版社, 2011.
WANG X CH. Finite Element Method[M]. Beijing:Tsinghua University Press, 2011. (in Chinese)
0
浏览量
497
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构