浏览全部资源
扫码关注微信
青岛理工大学 纳米制造与纳光电子实验室, 山东 青岛 266520
[ "兰红波(1970-), 男, 山东临沂人, 博士, 教授, 博士生导师, 2004年于西安交通大学获得博士学位, 现为青岛理工大学纳米制造与纳光电子实验室和青岛市3D打印工程研究中心主任, 主要从事大面积纳米压印、微纳尺度3D打印、微纳制造、多材料和多尺度3D打印等研究与开发。E-mail:hblan99@126.com" ]
[ "郭良乐(1993-), 男, 山东淄博人, 硕士研究生, 2015年于青岛理工大学获得学士学位, 主要从事大面积纳米压印、微纳制造方面的研究。E-mail:799140711@qq.com" ]
收稿日期:2017-07-18,
录用日期:2017-9-9,
纸质出版日期:2018-04-25
移动端阅览
兰红波, 郭良乐, 许权, 等. 大面积纳米压印光刻晶圆级复合软模具制造[J]. 光学 精密工程, 2018,26(4):894-905.
Hong-bo LAN, Liang-le GUO, Quan XU, et al. Wafer-level composite mold for large-area nanoimprint lithography[J]. Optics and precision engineering, 2018, 26(4): 894-905.
兰红波, 郭良乐, 许权, 等. 大面积纳米压印光刻晶圆级复合软模具制造[J]. 光学 精密工程, 2018,26(4):894-905. DOI: 10.3788/OPE.20182604.0894.
Hong-bo LAN, Liang-le GUO, Quan XU, et al. Wafer-level composite mold for large-area nanoimprint lithography[J]. Optics and precision engineering, 2018, 26(4): 894-905. DOI: 10.3788/OPE.20182604.0894.
为了解决大面积纳米压印所面临的大尺寸晶圆级复合软模具低成本制造的难题,对于当前广泛使用的大尺寸晶圆级双层复合软模具开展了理论分析、数值模拟和制造方法的系统研究。提出并建立了复合软模具脱模过程和气泡缺陷理论模型;利用ABAQUS工程模拟软件,揭示了大尺寸复合软模具影响脱模的因素和内在规律;提出一种大尺寸晶圆级双层复合软模具低成本制造方法,并完成了10.16 cm(4 inch)满片双层复合软模具复制的实验验证。研究结果为大尺寸复合软模具制造奠定了理论基础,并提供了一种低成本高质量制造大尺寸晶圆级双层复合软模具切实可行的方法。
In order to solve the problem of producing large-size and wafer-level composite flexible mold at low cost and high throughput for the large area NIL
this paper systematically investigated the theoretical model
numerical simulation and fabrication method for a large-size and wafer-level composite flexible mold with double-layer structures. Two models regarding the peel off demolding and the air bubble defects generated were proposed. Furthermore
the influence factors and laws of the peel demolding parameters for separating the replicated composite mold and the master mold were revealed by numerical simulation by using ABAQUS software. A manufacturing approach was presented to replicate the large size and wafer-level flexible mold with two-layer structures. Finally
a 4 inch full-wafer composite flexible mold was fabricated by using the proposed method and a 10.16 cm(4 inch) Si master. The studies in the paper are valuable in providing a theoretical basis for fabricating large-size and wafer-level composite mold
and offer a feasible and effective method to replicate large-size and wafer-level composite mold with low cost and high quality.
TRAUB M C, LONGSINE W, TRUSKETT V N. Advances in nanoimprint lithography[J]. Annual Review of Chemical and Biomolecular Engineering, 2016, 7:583-604.
JAIN A, SPANN A, COCHRANE A, et al.. Fluid flow in UV nanoimprint lithography with patterned templates[J]. Microelectronic Engineering, 2017, 173:62-70.
LAN H B, DING Y CH, LIU H ZH. Nanoimprint Lithography:Principles, Processes and Materials[M]. New York:Nova Science Publishers, 2011.
刘民哲, 王泰升, 李和福, 等.静电场辅助的微压印光刻技术[J].光学 精密工程, 2017, 25(3):663-671.
LIU M ZH, WANG T SH, LI H F, et al.. Electrostatic field assisted micro imprint lithography technology[J]. Opt. Precision Eng., 2017, 25(3):663-671. (in Chinese)
YAMADA Y, ITO K, MIURA A, et al.. Simple and scalable preparation of master mold for nanoimprint lithography[J]. Nanotechnology, 2017, 28(20):205303.
PROBST C, MEICHNER C, KREGER K, et al.. Athermal azobenzene-based nanoimprint lithography[J]. Advanced Materials, 2016, 28(13):2624-2628.
KOYAMA M, SHIRAI M, KAWATA H, et al.. Computational study on UV curing characteristics in nanoimprint lithography:stochastic simulation[J]. Japanese Journal of Applied Physics, 2017, 56(6S1):06GL03.
王定理, 刘文, 周宁, 等.用于分布反馈光栅的纳米压印模板制作[J].光学 精密工程, 2011, 19(11):2731-2735.
WANG D L, LIU W, ZHOU N, et al.. Nanoimprint stamp fabrication for DFB gratings[J]. Opt. Precision Eng., 2011, 19(11):2731-2735. (in Chinese)
IKEDA H, KASA H, NISHIYAMA H, et al.. Evaluation of demolding force for glass-imprint process[J]. Journal of Non-Crystalline Solids, 2014, 383:66-70.
吴东江, 许媛, 王续跃, 等.激光清洗硅片表面Al2O3颗粒的试验和理论分析[J].光学 精密工程, 2006, 14(5):764-770.
WU D J, XU Y, WANG X Y, et al.. Experimental and theoretical study on laser cleaning Al2O3 particle on silicon wafer surface[J]. Opt. Precision Eng., 2006, 14(5):764-770. (in Chinese)
周伟民.纳米压印技术[M].北京:科学出版社, 2011.
ZHOU W M. Nanoimprint Technology[M]. Beijing:Science Press, 2011. (in Chinese)
POPOV V L. Contact Mechanics and Friction:Physical Principles and Applications[M]. Berlin, Heidelberg:Springer, 2010.
AHN S H. High-throughput , continuous nanopatterning technologies for display and energy applications [D]. Michigan: University of Michigan, 2010.
LIU J, SHAO Y M, QIN X M, et al.. Dynamic modeling on localized defect of cylindrical roller bearing based on non-Hertz line contact characteristics[J]. Journal of Mechanical Engineering, 2014, 50(1):91-97.
PLACHETKA U, BENDER M, FUCHS A, et al.. Comparison of multilayer stamp concepts in UV-NIL[J]. Microelectronic Engineering, 2006, 83(4-9):944-947.
BHAGA D, WEBER M E. Bubbles in viscous liquids:shapes, wakes and velocities[J]. Journal of Fluid Mechanics, 1981, 105:61-85.
LAN H B, LIU H ZH. UV-nanoimprint lithography:structure, materials and fabrication of flexible molds[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(5):3145-3172.
李增辉, 兰红波, 刘红忠, 等.大面纳米积压印揭开式脱模建模与模拟[J].中国科学:技术科学, 2014, 44(10):1087-1096.
LI Z H, LAN H B, LIU H ZH, et al.. Theory and simulations of peel demolding for large-area nanoimprint lithography[J]. Scientia Sinica Technologica, 2014, 44(10):1087-1096. (in Chinese)
0
浏览量
384
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构