浏览全部资源
扫码关注微信
1.深圳大学 信息工程学院, 广东 深圳 518060
2.深圳市媒体信息内容安全重点实验室, 广东 深圳 518060
[ "张坤华(1973-), 女, 副教授, 2003年于中国科学院光电技术研究所获得博士学位, 主要研究方向为图像处理, 智能信息处理, 模式识别, 目标检测与跟踪等。E-mail:zhang_kh@szu.edu.cn" ]
[ "谭志恒(1992-), 男, 广东珠海人, 硕士研究生, 2015年于深圳大学获得学士学位, 现为深圳大学信息工程学院硕士研究生, 主要从事图像处理, 智能信息处理的算法研究。E-mail:tanzhiheng120hz@163.com" ]
[ "李斌(1982-), 男, 广东五华人, 副教授, 硕士生导师, 2004年、2009年于中山大学分别获学士学位、博士学位, 主要从事图像处理和机器学习方面的研究。Email:libin@szu.edu.cn" ]
收稿日期:2017-06-28,
录用日期:2017-8-15,
纸质出版日期:2018-04-25
移动端阅览
张坤华, 谭志恒, 李斌. 结合粒子群优化和综合评价的脉冲耦合神经网络图像自动分割[J]. 光学 精密工程, 2018,26(4):962-970.
Kun-hua ZHANG, Zhi-heng TAN, bin LI. Automated image segmentation based on pulse coupled neural network with partide swarm optimization and comprehensive evaluation[J]. Optics and precision engineering, 2018, 26(4): 962-970.
张坤华, 谭志恒, 李斌. 结合粒子群优化和综合评价的脉冲耦合神经网络图像自动分割[J]. 光学 精密工程, 2018,26(4):962-970. DOI: 10.3788/OPE.20182604.0962.
Kun-hua ZHANG, Zhi-heng TAN, bin LI. Automated image segmentation based on pulse coupled neural network with partide swarm optimization and comprehensive evaluation[J]. Optics and precision engineering, 2018, 26(4): 962-970. DOI: 10.3788/OPE.20182604.0962.
为了解决脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)在图像分割中多参数设定以及评价准则单一的问题,提出了一种结合粒子群优化算法(Particle Swarm Optimization,PSO)和综合评价准则的PCNN图像自动分割方法。采用单调递增阈值搜索策略的PCNN改进模型,将PSO优化原理与由交叉熵参数,边缘匹配度和噪点控制度共同构成的综合评价相结合,以综合评价作为粒子的适应度函数,自动寻优获取PCNN图像分割模型的目标时间常数,连接系数以及迭代次数
n
,从而实现全参数自适应的PCNN图像分割。实验结果表明算法在保证PCNN运行效率下对不同类型图像都能进行正确完整的分割并兼顾纹理细节的保留。从实验数据可以看到,本文算法在综合评价和通用综合指标上均优于其他对比算法,综合评价平均优于其他算法10.5%。客观评价结果与视觉主观评价相一致,分割较理想,算法具有较高的鲁棒性。
Multi-parameter setting and single segmentation evaluation criterion are the problems in image segmentation based on Pulse Coupled Neural Network (PCNN). Through combining Particle Swarm Optimization (PSO) with comprehensive evaluation criterion
this paper presented an automatic image segmentation algorithm based on PCNN. The improved PCNN model with monotonically increasing threshold search strategy was utilized in this algorithm. The Comprehensive Evaluation Criterion(CEC) obtained by cross-entropy parameter
edge matching degree and noise control degree were proposed as the fitness of particles in PSO
then the parameters of PCNN such as the target time constant
the connection coefficient and the iteration times n were acquired adaptively by updating fitness value of particles. By using these acquired optimum parameters
the image was segmented by the improved PCNN. For different types of images
experimental results show that algorithm proposed can segment image completely and accurately under PCNN operating efficiency
moreover texture details are retained. Compared with other experimental methods
the segmented results obtained by proposed algorithm are superior to that obtained by other algorithms in CEC 10.5%. In addition
the general comprehensive indicators of the segmented results obtained in this research are also optimal. Thus
it can be seen that the objective evaluations are consistent with the visual subjective evaluations
and the algorithm proposed has high robustness.
ECKHORN R, REITBOECK H J, ARNDT M, et al.. Feature linking via synchronization among distributed assemblies:simulations of results from cat visual cortex[J]. Neural Computation, 1990, 2(3):293-307.
JOHNSON J L, PADGETT M L. PCNN models and applications[J]. IEEE Transactions on Neural Networks, 1999, 10(3):480-498.
马义德, 戴若兰, 李廉.一种基于脉冲耦合神经网络和图像熵的自动图像分割方法[J].通信学报, 2002, 23(1):46-51.
MA Y D, DAI R L, LI L. Automated image segmentation using pulse coupled neural networks and image's entropy[J]. Journal of China Institute of Communications, 2002, 23(1):46-51. (in Chinese)
刘勍, 马义德, 钱志柏.一种基于交叉熵的改进型PCNN图像自动分割新方法[J].中国图像图形学报, 2005, 10(5):579-584.
LIU Q, MA Y D, QIAN ZH B. Automated image segmentation using improved PCNN model based on cross-entropy[J]. Journal of Image and Graphics, 2005, 10(5):579-584. (in Chinese)
赵峙江, 张田文, 张志宏.一种新的基于PCNN的图像自动分割算法研究[J].电子学报, 2005, 33(7):1342-1344.
ZHAO SH J, ZHANG T W, ZHANG ZH H. A study of a new image segmentation algorithm based on PCNN[J]. Acta Electronica Sinica, 2005, 33(7):1342-1344. (in Chinese)
郑欣, 彭真明.基于活跃度的脉冲耦合神经网络图像分割[J].光学 精密工程, 2013, 21(3):821-827.
ZHENG X, PENG ZH M. Image segmentation based on activity degree with pulse coupled neural networks[J]. Opt. Precision Eng., 2013, 21(3):821-827. (in Chinese)
CHEN Y L, PARK S K, MA Y D, et al.. A new automatic parameter setting method of a simplified PCNN for image segmentation[J]. IEEE Transactions on Neural Networks, 2011, 22(6):880-892.
曲仕茹, 杨红红.基于遗传算法参数优化的PCNN红外图像分割[J].强激光与粒子束, 2015, 27(5):051007.
QU SH R, YANG H H. Infrared image segmentation based on PCNN with genetic algorithm parameter optimization[J]. High Power Laser and Particle Beams, 2015, 27(5):051007. (in Chinese)
吴骏, 孙明明, 肖志涛, 等.联合蚁群算法和PCNN的脑部MRI图像分割方法[J].光电子·激光. 2014, 25(3):614-619.
WU J, SUN M M, XIAO ZH T, et al.. Ant colony optimization combined with PCNN for brain MRI image segmentation[J]. Journal of Optoelectronics·Laser, 2014, 25(3):614-619. (in Chinese)
TAN W CH, ISA N A M. Segmentation and detection of human spermatozoa using modified Pulse Coupled Neural Network optimized by Particle Swarm Optimization with Mutual Information[C]. Proceedings of the 10 th Conference on Industrial Electronics and Applications , IEEE , 2015: 192-197.
马义德, 齐春亮.基于遗传算法的脉冲耦合神经网络自动系统的研究[J].系统仿真学报, 2006, 18(3):722-725.
MA Y D, QI CH L. Study of automated PCNN system based on genetic algorithm[J]. Journal of System Simulation, 2006, 18(3):722-725. (in Chinese)
卢桂馥, 王勇, 窦易文.一种参数自动寻优的PCNN图像分割算法[J].计算机工程与应用, 2010, 46(13):145-146, 157.
LU G F, WANG Y, DOU Y W. Automated PCNN image segmentation method with optimal parameters[J]. Computer Engineering and Applications, 2010, 46(13):145-146, 157. (in Chinese)
CHEN Y L, MA Y D, KIM D H, et al.. Region-based object recognition by color segmentation using a simplified PCNN[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(8):1682-1697.
徐光柱, 张柳, 邹耀斌, 等.自适应脉冲耦合神经网络与匹配滤波器相结合的视网膜血管分割[J].光学 精密工程, 2017, 25(3):756-764.
XU G ZH, ZHANG L, ZOU Y B, et al.. Retinal blood segmentation with adaptive PCNN and matched filter[J]. Opt. Precision Eng., 2017, 25(3):756-764. (in Chinese)
沈艳, 郭兵, 古天祥.粒子群优化算法及其与遗传算法的比较[J].电子科技大学学报, 2005, 34(5):696-699.
SHEN Y, GUO B, GU T X. Particle swarm optimization algorithm and comparison with genetic algorithm[J]. Journal of University of Electronic Science and Technology of China, 2005, 34(5):696-699. (in Chinese)
贾松敏, 徐涛, 董政胤, 等.采用脉冲耦合神经网络的改进显著性区域提取方法[J].光学 精密工程, 2015, 23(3):819-826.
JIA S M, XU T, DONG ZH Y, et al.. Improved salience region extraction algorithm with PCNN[J]. Opt. Precision Eng., 2015, 23(3):819-826. (in Chinese)
马义德, 李廉, 绽琨, 等.脉冲耦合神经网络与数字图像处理[M].北京:科学出版社, 2008.
MA Y D, LI L, ZHAN K, et al.. Pulse Couled Neural Network and Digital Image Processing[M]. Beijing:Science Press, 2008. (in Chinese)
顾晓东, 余道衡. PCNN的原理及其应用[J].电路与系统学报, 2001, 6(3):45-50.
GU X D, YU D H. PCNN's principles and applications[J]. Journal of Circuits and Systems, 2001, 6(3):45-50. (in Chinese)
SHI Y, EBERHART R. A modified particle swarm optimizer[C]. Proceedings of IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence , IEEE , 1998: 69-73.
0
浏览量
348
下载量
11
CSCD
关联资源
相关文章
相关作者
相关机构