浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100039
[ "王建立(1971-), 男, 山东曲阜人, 博士, 研究员, 博士生导师, 主要从事空间目标探测技术、地基高分辨率成像光电望远镜总体技术等方面的研究。E-mail:wangjianli@ciomp.ac.cn" ]
[ "董玉磊(1993-), 女, 河北邢台人, 硕士研究生, 2015年于电子科技大学获得学士学位, 主要从事自适应光学波前处理方面的研究。E-mail:dongyulei_1993@163.com" ]
收稿日期:2017-10-31,
录用日期:2017-12-15,
纸质出版日期:2018-05-25
移动端阅览
王建立, 董玉磊, 姚凯男, 等. 349单元自适应光学波前处理器[J]. 光学 精密工程, 2018,26(5):1007-1013.
Jian-li WANG, Yu-lei DONG, Kai-nan YAO, et al. Three hundred and fourty-nine unit adaptive optical wavefront processor[J]. Optics and precision engineering, 2018, 26(5): 1007-1013.
王建立, 董玉磊, 姚凯男, 等. 349单元自适应光学波前处理器[J]. 光学 精密工程, 2018,26(5):1007-1013. DOI: 10.3788/OPE.20182605.1007.
Jian-li WANG, Yu-lei DONG, Kai-nan YAO, et al. Three hundred and fourty-nine unit adaptive optical wavefront processor[J]. Optics and precision engineering, 2018, 26(5): 1007-1013. DOI: 10.3788/OPE.20182605.1007.
为了满足大型地基高分辨率成像望远镜对自适应光学系统校正频率和成像质量的要求,本文设计了一套349单元自适应光学波前处理系统,该系统在349单元变形镜自适应光学系统上实现了1 500 Hz的波前校正频率。设计了以控制计算机、FPGA波前斜率处理器、GPU矩阵乘法处理器以及模块化数模转换机箱等作为主要部件的实时波前处理器,报道了349单元变形镜自适应光学系统对动态像差的闭环校正结果,实验中对模拟大气相干长度
r
0
为6 cm,格林伍德频率为160 Hz的大气湍流实现有效校正,自适应光学系统闭环后,波前像差的1 000帧平均均方根值由1.07
λ
(中心波长600 nm,后同)下降至0.11
λ
。本文设计的349单元变形镜自适应光学系统能够在1 500 Hz的波前校正频率下有较高的成像质量,波前处理延时优于235 μs。功率谱分析结果表明自适应光学系统对100 Hz以下的波前畸变具有明显的校正效果。
In order to meet the correction frequency and imaging quality requirements of adaptive optics systems for large ground-based high-resolution imaging telescopes
a 349-unit wavefront processor was designed
which realized a wavefront correction frequency of 1 500 Hz. The design of a real-time wavefront processor was proposed whose main components were a control computer
a FPGA wavefront slope processor
a GPU matrix multiplication handler and a modularization D/A converter. A closed-loop calibration result of the dynamic aberration produced by the 349-unit adaptive optics system was reported. In this experiment
the system realized an effective correction of the simulated atmospheric turbulence whose atmospheric coherent length
r
0
is 6 cm and the Greenwood frequency is 160 Hz. After the closed loop evaluation of the adaptive optics system
the average square root value of 1 000 frames of the wavefront aberration drops from 1.07
λ
to 0.11
λ
(the central wavelength is 600 nm). The proposed 349-unit adaptive optics system can achieve a higher imaging quality under the wavefront correction frequency of 1 500 Hz. Moreover
the wavefront processing delay is better than 235 μs. The analysis of the power spectrum reveals that this adaptive optics system can correct wavefront distortion which was less than 100 Hz.
张浩田. 基于多核DSP的实时波前复原研究[D]. 北京: 中国科学院研究生院(光电技术研究所), 2013.
ZHANG H T. Research of Real-time Wavefront Reconstrustruction Based on Multi-core DSP[D]. Beijing: Graduate University of Chinese Academy of Sciences (Institute of Optoelectronic Technology), 2013. (in Chinese)
卫沛锋, 林旭东, 王亮, 等.大气相干长度的瞬时测量[J].光学 精密工程, 2016, 24(8):1840-1845
WEI P F, LIN X D, WANG L, et al.. Simultaneous measurement of atmospheric coherence length[J]. Opt. Precision Eng., 2016, 24(8):1840-1845. (in Chinese)
林旭东, 薛陈, 刘欣悦, 等.自适应光学波前校正器技术发展现状[J].中国光学, 2012, 5(4):337-351.
LIN X D, XUE CH, LIU X Y, et al.. Current status and research development of wavefront correctors for adaptive optics[J]. Chinese Optics, 2012, 5(4):337-351. (in Chinese)
曹召良, 李小平, 宣丽, 等.液晶自适应光学的研究进展[J].中国光学, 2012, 5(1):12-19.
CAO ZH L, LI X P, XUAN L, et al.. Recent progress in liquid crystal adaptive optical techniques[J]. Chinese Optics, 2012, 5(1):12-19. (in Chinese)
王建立, 陈涛, 张景旭, 等.地基高分辨率光电成像望远镜总体需求及关键技术分析[J].光学 精密工程, 2008, 16(5):2-16.
WANG J L, CHEN T, ZHANG J X, et al.. General requirements and key technologies for the ground-based high resolution EO imaging telescope[J]. Opt. Precision Eng., 2008, 16(5):2-16. (in Chinese)
GOODSELL S J, FEDRIGO E, DIPPER N A, et al.. FPGA developments for the SPARTA project[J]. SPIE, 2005, 5903:59030G.
GOODSELL S J, GENG D, FEDRIGO E, et al.. FPGA developments for the SPARTA project:part 2[J]. SPIE, 2006, 6272:627241.
GOODSELL S J, GENG D, YOUNGER E J, et al.. FPGA developments for the SPARTA project:part 3[J]. SPIE, 2007, 6691:669103.
BOYER C, ELLERBROEK B, HERRIOT G, et al.. TMT adaptive optics systems control architecture[J]. SPIE, 2006, 6272:627211.
BOYER C, GILLES L, ELLERBROEK B, et al.. Update on the TMT adaptive optics real time controller[J]. SPIE, 2008, 7015:701531.
REINIG M, GAVEL D, ARDESTANI E, et al.. Real-time control for keck observatory next-generation adaptive optics[J]. SPIE, 2010, 7736:77363J.
FEDRIGO E, BOURTEMBOURG R, DONALDSON R, et al.. SPARTA for the VLT:status and plans[J]. SPIE, 2010, 7736:77362I.
贾建禄, 赵金宇, 王建立, 等.基于FPGA的自适应光学波前处理算法[J].光学 精密工程, 2017, 25(10):2580-2583.
JIA J L, ZHAO J Y, WANG J L, et al.. Adaptive optical wave-front processing algorithm based on FPGA[J]. Opt. Precision Eng., 2017, 25(10):2580-2583. (in Chinese)
林旭东, 刘欣悦, 王建立, 等. 961单元变形镜研制及性能测试[J].光学学报, 2013, 33(6):601001.
LIN X D, LIU X Y, WANG J L, et al.. Development and performance test of the 961-element deformable mirror[J]. Acta Optica Sinica, 2013, 33(6):601001.
GUAN CH L, FAN X L, ZHANG X J, et al.. Piezoelectric deformable mirror technologies for astronomy at IOE, CAS[J]. SPIE, 2016, 9148:91480H.
0
浏览量
688
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构