浏览全部资源
扫码关注微信
国防科技大学 智能科学学院, 湖南 长沙 410073
[ "范大鹏(1964-), 男, 河南周口人, 教授, 博士生导师, 1991年于华中科技大学获得博士学位, 主要从事数控技术, 嵌入式系统以及精密光电跟踪平台测控技术的研究。E-mail:fdp@nudt.edu.cn" ]
收稿日期:2018-01-31,
录用日期:2018-2-16,
纸质出版日期:2018-05-25
移动端阅览
范大鹏, 谢馨, 祁超, 等. 精密柔索传动技术研究现状及分析[J]. 光学 精密工程, 2018,26(5):1078-1097.
Da-peng FAN, Xin XIE, Chao Qi, et al. Research on status and analysis of precise cable drive technology[J]. Optics and precision engineering, 2018, 26(5): 1078-1097.
范大鹏, 谢馨, 祁超, 等. 精密柔索传动技术研究现状及分析[J]. 光学 精密工程, 2018,26(5):1078-1097. DOI: 10.3788/OPE.20182605.1078.
Da-peng FAN, Xin XIE, Chao Qi, et al. Research on status and analysis of precise cable drive technology[J]. Optics and precision engineering, 2018, 26(5): 1078-1097. DOI: 10.3788/OPE.20182605.1078.
精密柔索传动是一种通过主、从动轮之间有适当预紧的传动介质来实现的挠性摩擦传动方式,具有布局灵活、高精度、轻量化等特点,在多种灵巧性精密机电装置和伺服机构中得到了广泛的应用。本文归纳了柔索传动技术在精密指向机构、人机交互机器人、跑步机器人、灵巧手和微创手术末端器械等方面的应用进展;总结了亟待解决的基础理论和应用研究相关问题,主要包括传动机理研究、伺服系统的应用研究、针对典型应用需求的工程设计方法研究等;最后,对进一步发展精密柔索传动理论分析与工程设计技术提出了建议。
A precise cable drive system is a flexible friction transmission method that utilizes the power transmitted from drive capstans to a driven pulley through a proper preloaded transmission medium. It has many advantages
such as flexible layout and high precision
besides being lightweight. It is widely used in many dexterous precise electromechanical devices and servomechanisms. The progress in the applicability of the precise cable drive is summarized in the aspects of precision pointing mechanism
harmonious robot
haptic interface mechanism
running robot
dexterous hand and endoscopic surgery. Next
the urgent issues of the basic theory and application research are dealt with
including studies on transmission mechanism
applied studies on servo systems
and engineering design methods for typical applications. Eventually
some suggestions regarding further research on theory analysis and engineering design technology of the precise cable drive system have been put forward.
SALISBURY JR K J, TOWNSEND W T, DIPIETRO D M, et al. . Compact cable transmission with cable differential: US, 5046375[P]. 1991-09-10.
PIETRO D, MARK D. Development of an Actively Compliant Underwater Manipulator[D]. Massachusetts: Massachusetts Institute of Technology, 1988.
SALISBURY K, TOWNSEND W, EBRMAN B, et al. . Preliminary design of a whole-arm manipulation system (WAMS)[C]. Proceedings of 1988 IEEE International Conference on Robotics and Automation, IEEE, 1988: 254-260.
CARSON D G. Precision positioning apparatus having a rotating driving element and a rotating driven element: US, 4351197[P]. 1982-09-28.
CARSON D G. Rotary drive apparatus having multiple drive shafts: US, 4787259[P]. 1988-11-29.
范世珣. 精密指向机构非线性动力学建模与测控问题研究[D]. 长沙: 国防科学技术大学, 2012.
FAN SH X. Study on Nonlinear Dynamic Modeling Measurement and Control Problems for Precision Pointing Mechanisms[D]. Changsha: National University of Defense Technology, 2012. (in Chinese)
KOREVAAR E J, BLOOM S H, SLATNICK K D, et al.. Status of SDIO/IS&T lasercom testbed program[J]. SPIE, 1993, 1866:116-127.
SCHULTHESS M R, ARDAMAN A A, BAUGH S, et al.. Performance of the high-altitude balloon experiment Roto-lok drive gimbal systems[J]. SPIE, 1994, 2221:652-664.
MOOG. Spacecraft mechanisms product catalog[G]. MOOG Schaffer Magnetics Division, 2005:67-68.
SUTHERLAND O. Tracking with hybrid-drive active vision[C]. International Symposium on Experimental Robotics, ISER, 2000.
DANKERS A, ZELINSKY A. CeDAR:A real-world vision system:mechanism, control and visual processing[J]. Machine Vision and Applications, 2004, 16(1):47-58.
段颖辉.小型车载卫通天线座的结构设计[J].电子机械工程, 2004, 20(2):21-24.
DUAN Y H. Mechanical design of a small vehicle-borne satellite communication antenna pedestal[J]. Electro-Mechanical Engineering, 2004, 20(2):21-24. (in Chinese)
张洪文, 曹国华, 李延伟, 等.钢丝绳传动在航空光学遥感器上的应用[J].激光与红外, 2013, 43(4):418-422.
ZHANG H W, CAO G H, LI Y W. et al.. Application of wire rope gearing in aerial optical remote sensor[J]. Laser & Infrared, 2013, 43(4):418-422. (in Chinese)
COLGATE J E, WANNASUPHOPRASIT W, PESHKIN M A. Cobots: robots for collaboration with human operators[C]. Proceedings of the ASME Dynamic Systems and Control Division, ASME, 1996, 58: 433-439.
Barrett. Inc. WAM Arm[EB/OL]. http://barrettcom/companyhtm.2011 http://barrettcom/companyhtm.2011 .
3DSYSTEMS. Phantom premium: Advanced haptic devices for academic and commercial research and development[EB/OL]. http://wwwgeomagiccom/en/products/phantom-premium/overview.2015 http://wwwgeomagiccom/en/products/phantom-premium/overview.2015 .
ROOKS B. The harmonious robot[J]. Industrial Robot:An International Journal, 2006, 33(2):125-130.
EDSINGER A L. Robot Manipulation in Human Environments[D]. Massachusetts: Massachusetts Institute of Technology, 2007.
QUIGLEY M, BREWER R, SOUNDARARAJ S P, et al. . Low-cost accelerometers for robotic manipulator perception[C]. Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2010: 6168-6174.
BREWER R D, SALISBURY J K. Visual vein-finding for robotic Ⅳ insertion[C]. Proceedings of 2010 IEEE International Conference on Robotics and Automation, IEEE, 2010: 4597-4602.
MALYSZ P, SIROUSPOUR S. Maneuverability and grasping experiments in teleoperation of nonholonomic/twin-armed robots[C]. Proceedings of 2012 IEEE Haptics Symposium, IEEE, 2012: 203-209.
HAGN U, NICKL M, JÖRG S, et al.. The DLR MIRO:a versatile lightweight robot for surgical applications[J]. Industrial Robot, 2008, 35(4):324-336.
闫婉. 新型移动机器人系统设计与研究[D]. 上海: 上海交通大学, 2011.
YAN W. The System Design and Study for New Type Mobile Robot[D]. Shanghai: Shanghai Jiaotong University, 2011. (in Chinese)
陈伟海, 游贤强, 崔翔, 等.绳驱动拟人臂机器人的动力学建模及张力分析[J].北京航空航天大学学报, 2013, 39(3):335-339.
CHEN W H, YOU X Q, CUI X, et al.. Dynamics modeling and tension analysis for a cable-driven humanoid-arm robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(3):335-339. (in Chinese)
李国杰. 基于虚拟现实技术的力觉交互设备的研究与构建[D]. 上海: 上海交通大学, 2008.
LI G J. Research & Design of a Haptic Interface Based on Virtual Reality Technology[D]. Shanghai: Shanghai Jiaotong University, 2008. (in Chinese)
WINFREE K N, ROMANO J M, GEWIRTZ J, et al. . Control of a high fidelity ungrounded torque feedback device: the iTorqU 2. 1[C]. Proceedings of 2010 IEEE International Conference on Robotics and Automation, IEEE, 2010: 1347-1352.
SALISBURY C, SALISBURY JR J K. Haptic device for telerobotic surgery: US, 8924009[P]. 2015-12-30.
SALISBURY C M, SALISBURY J K, GILLESPIE R B, et al. . A microsurgery-specific haptic device for telerobotic medical treatment[C]. Emergency Preparedness and Response and Robotic and Remote Systems Topical Meeting, American Nuclear Society, 2008.
BREWER D, LEEPER A, SALISBURY J K. A friction differential and cable transmission design for a 3-DOF haptic device with spherical kinematics[C]. Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2011: 2570-2577.
LEE L F, NARAYANAN M S, MENDEL F, et al. . Kinematics analysis of in-parallel 5 DOF haptic device[C]. Proceedings of 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, IEEE, 2010: 237-241.
ARATA J, KONDO H, SAKAGUCHI M, et al. . Development of a haptic device "DELTA-4" using parallel link mechanism[C]. Proceedings of 2009 IEEE International Conference on Robotics and Automation, IEEE, 2009: 1404-1410.
VLACHOS K, PAPADOPOULOS E, MITROPOULOS D N. Design and implementation of a haptic device for training in urological operations[J]. IEEE Transactions on Robotics and Automation, 2003, 19(5):801-809.
马运忠, 张玉茹, 曹永刚.六自由度力觉交互装置刚度分析[J].机械设计与研究, 2007(S1):225-229.
MA Y ZH, ZHANG Y R, CAO Y G. Stiffness analysis of 6 DOF haptic device[J]. Machine Design and Research, 2007(S1):225-229. (in Chinese)
LI CH B, WANG D X, ZHANG Y R. iFeel3: a haptic device for virtual reality dental surgery simulation[C]. Proceedings of 2011 International Conference on Virtual Reality and Visualization, IEEE, 2011: 179-184.
PERRY J C, ROSEN J. Design of a 7 degree-of-freedom upper-limb powered exoskeleton[C]. Proceedings of the 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, IEEE, 2006: 805-810.
BALL S J, BROWN I E, SCOTT S H. MEDARM: a rehabilitation robot with 5DOF at the shoulder complex[C]. Proceedings of 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, IEEE, 2007: 1-6.
CUI X, CHEN W H, JIN X, et al.. Design of a 7-DOF cable-driven arm exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(1):161-172.
AGUIRRE-OLLINGER G, COLGATE J E, PESHKIN M A, et al. . A 1-DOF assistive exoskeleton with virtual negative damping: effects on the kinematic response of the lower limbs[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2007: 1938-1944.
CEMPINI M, CORTESE M, VITIELLO N. A powered finger-thumb wearable hand exoskeleton with self-aligning joint axes[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(2):705-716.
JIANG X ZH, HUANG X H, XIONG C H, et al.. Position control of a rehabilitation robotic joint based on neuron proportion-integral and feedforward control[J]. Journal of Computational and Nonlinear Dynamics, 2012, 7(2):024502.
樊骏锋. 基于绳索驱动的上肢康复机器人研究[D]. 西安: 西安电子科技大学, 2014.
FAN J F. A Study of Cable-driven Robot for Upper Limbs Rehabilitation[D]. Xi'an: Xidian University, 2014. (in Chinese)
黄元林, 付成龙, 王健美, 等.双足跑步机器人控制方法研究概述[J].机器人, 2009, 31(4):370-377.
HUANG Y L, FU CH L, WANG J M, et al.. A survey of the research on control methods for biped running robot[J]. Robot, 2009, 31(4):370-377. (in Chinese)
PARK H W, SREENATH K, HURST J W, et al. . Identification and dynamic model of a bipedal robot with a cable-differential-based compliant drivetrain[R]. CGR 10-06, Michigan: University of Michigan Control Group, 2010.
HURST J W. The Role and Implementation of Compliance in Legged Locomotion[D]. Pittsburgh: Carnegie Mellon University, 2008.
LOEFFL F C, WERNER A, LAKATOS D, et al. . The DLR c-runner: concept, design and experiments[C]. Proceedings of 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), IEEE, 2016: 758-765.
HUTTER M, GEHRING C, BLOESCH M, et al. . STARLETH: a compliant quadrupedal robot for fast, efficient, and versatile locomotion[C]. Proceedings of the 15th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Autonomous Systems Lab, ETH Zurich, 2012: 904.
OHTSUKA S, ENDO G, FUKUSHIMA E F, et al. . Development of terrain adaptive sole for multi-legged walking robot[C]. Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2010: 5354-5359.
侯月阳. 挠性驱动单元及其在仿人双足步行机器人应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
HOUY Y. Research on Flexible Drive Unit and Its Application in Humanoid Biped Robot[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese)
BORST C, FISCHER M, HAIDACHER S, et al. . DLR hand Ⅱ: experiments and experience with an anthropomorphic hand[C]. Proceedings of 2003 IEEE International Conference on Robotics and Automation, IEEE, 2003: 702-707.
CHALON M, MAIER M, BERTLEFF W, et al. . Spacehand: a multi-fingered robotic hand for space[C]. Proceedings of the 13th Symposium on Advanced Space Technologies in Robotics and Automation, ESA, 2015.
HAND A, FRIEDL W, CHALON M, et al. . FAS A flexible antagonistic spring element for a high performance over[C]. Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2011: 1366-1372.
SRC. Shadow Dexterous Hand Technical Specification[EB/OL]. (2013-01-01). http://wwwshadowrobotcom/wp-content/uploads/shadow_dexterous_hand_technical_specification_E1_20130101.pdf http://wwwshadowrobotcom/wp-content/uploads/shadow_dexterous_hand_technical_specification_E1_20130101.pdf .
CHEN ZH P, LⅡ N Y, WIMBÖCK T, et al.. Experimental analysis on spatial and cartesian impedance control for the dexterous DLR/HIT Ⅱ hand[J]. International Journal of Robotics and Automation, 2014, 29(1):1-12.
Company IS. EndoWrist©/Single-Site© Instrument & Accessory Catalog[EB/OL]. In: https://www.intuitivesurgi-cal.com/assets/docs/1021625-EUrA_Si_System_I&A_Catalog_no_pricing_EU_highres.pdf https://www.intuitivesurgi-cal.com/assets/docs/1021625-EUrA_Si_System_I&A_Catalog_no_pricing_EU_highres.pdf , (ed. ). 2015.
HAGN U, KONIETSCHKE R, TOBERGTE A, et al.. DLR miroSurge:a versatile system for research in endoscopic telesurgery[J]. International Journal of Computer Assisted Radiology and Surgery, 2010, 5(2):183-193.
ROSEN J, BROWN J D, DE S, et al.. Biomechanical properties of abdominal organs in vivo and postmortem under compression loads[J]. Journal of Biomechanical Engineering, 2008, 130(2):021020.
HANNAFORD B, ROSEN J, FRIEDMAN D W, et al.. Raven-Ⅱ:an open platform for surgical robotics research[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(4):954-959.
MOREYRA M R. Wrist with decoupled motion transmission: US, 6969385[P]. 2005-11-29.
王晓菲. 基于柔性丝传动的腹腔微创手术器械设计方法研究[D]. 天津: 天津大学, 2012.
WANG X F. Mechanism of Minimally Invasive Surgery Device with Cable Transmission[D]. Tianjin: Tianjin University, 2012. (in Chinese)
赵旭东. 腹腔微创手术机器人手术器械的结构设计[D]. 哈尔滨: 哈尔滨工业大学, 2010.
ZHAO X D. Structural Design of Surgical Instrument for Celiac Minimally Invasive Surgical Robot[D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese)
BECHTEL S E, VOHRA S, JACOB K I, et al.. The stretching and slipping of belts and fibers on pulleys[J]. Journal of Applied Mechanics, 2000, 67(1):197-206.
RUBIN M B. An exact solution for steady motion of an extensible belt in multipulley belt drive systems[J]. Journal of Mechanical Design, 2000, 122(3):311-316.
KONG L Y, PARKER R G. Steady mechanics of belt-pulley systems[J]. Journal of Applied Mechanics, 2005, 72(1):25-34.
JUNG J H, PAN N, KANG T J. Generalized capstan problem:bending rigidity, nonlinear friction, and extensibility effect[J]. Tribology International, 2008, 41(6):524-534.
KIM D, LEAMY M J, FERRI A A. Dynamic modeling and stability analysis of flat belt drives using an elastic/perfectly plastic friction law[J]. Journal of Dynamic Systems, Measurement and Control, 2011, 133(4):041009.
MORIMOTO T, ⅡZUKA H. Rolling contact between a rubber ring and rigid cylinders:mechanics of rubber belts[J]. International Journal of Mechanical Sciences, 2012, 54(1):234-240.
LEAMY M J. On a perturbation method for the analysis of unsteady belt-drive operation[J]. Journal of Applied Mechanics, 2005, 72(4):570-580.
LEAMY M J, WASFY T M. Transient and steady-state dynamic finite element modeling of belt-drives[J]. Journal of Dynamic Systems, Measurement, and Control, 2002, 124(4):575-581.
ELISEEV V, VETYUKOV Y. Effects of deformation in the dynamics of belt drive[J]. Acta Mechanica, 2012, 223(8):1657-1667.
VETYUKOV Y, ELISEEV V. The model of a deformable string with discontinuities at spatial description in the dynamics of a belt drive[M]//BELYAEV A K, IRSCHIK H, KROMMER M. Mechanics and Model-Based Control of Advanced Engineering Systems. Vienna: Springer, 2014: 275-283.
VETYUKOV Y, ELISEEV V, KROMMER M. Modeling the dynamics of a flexible belt drive using the equations of a deformable string with discontinuities[J]. IFAC-Papersonline, 2015, 48(1):604-609.
VETYUKOV Y, OBORIN E, KROMMER M, et al.. Transient modelling of flexible belt drive dynamics using the equations of a deformable string with discontinuities[J]. Mathematical and Computer Modelling of Dynamical Systems, 2017, 23(1):40-54.
VETYUKOV Y, GRUBER P G, KROMMER M. Nonlinear model of an axially moving plate in a mixed Eulerian-Lagrangian framework[J]. Acta Mechanica, 2016, 227(10):2831-2842.
SHABANA A A, YAKOUB R Y. Three dimensional absolute nodal coordinate formulation for beam elements:theory[J]. Journal of Mechanical Design, 2001, 123(4):606-613.
DUFVA K, KERKKÄNEN K, MAQUEDA L G, et al.. Nonlinear dynamics of three-dimensional belt drives using the finite-element method[J]. Nonlinear Dynamics, 2007, 48(4):449-466.
EPON G, BOLTEŽAR M. Dynamics of a belt-drive system using a linear complementarity problem for the belt-pulley contact description[J]. Journal of Sound and Vibration, 2009, 319(3-5):1019-1035.
PENG Y X, ZHU ZH C, CHEN G A, et al.. Effect of tension on friction coefficient between lining and wire rope with low speed sliding[J]. Journal of China University of Mining and Technology, 2007, 17(3):409-413.
LEE T K, KIM C Y, LEE M C. Friction analysis according to pretension of laparoscopy surgical robot instrument[J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(2):259-266.
ALBRO C S, LIU F. Effect of groove shape on the frictional hold of a sheave on polyester rope[J]. Journal of Energy Resources Technology, 1985, 107(1):103-106.
TU C F, FORT T. A study of fiber-capstan friction. 1. Stribeck curves[J]. Tribology International, 2004, 37(9):701-710.
方子帆, 吴建华, 何孔德, 等.索结构碰撞动力学模型及应用研究[J].系统仿真学报, 2011, 23(5):1005-1009.
FANG Z F, WU J H, HE K D, et al.. Impact dynamic modeling and application study of cable structures[J]. Journal of System Simulation, 2011, 23(5):1005-1009. (in Chinese)
李菁, 李济顺, 刘义, 等.虚拟样机技术在摩擦式提升机动力学分析中应用[J].机械设计与制造, 2014(9):238-241.
LI J, LI J SH, LIU Y, et al.. Application of virtual prototyping in multi-rope friction mine hoist analysis[J]. Machinery Design & Manufacture, 2014(9):238-241. (in Chinese)
刘义, 陈国定, 李济顺, 等.摩擦提升机的虚拟样机研究[J].计算机仿真, 2009, 26(11):272-277.
LIU Y, CHEN G D, LI J SH, et al.. Research on virtual prototyping of multi-rope friction winder[J]. Computer Simulation, 2009, 26(11):272-277. (in Chinese)
李凯, 叶佩青, 周晓尧, 等.精密行星滚柱丝杠的传动特性[J].光学 精密工程, 2016, 24(8):1908-1916.
LI K, YE P Q, ZHOU X Y, et al.. Transmission characteristics of precise planetary roller screw[J]. Optics and Precision Engineering, 2016, 24(8):1908-1916. (in Chinese)
杨会生, 李志来, 樊延超, 等.空间相机均力输出式调焦机构[J].光学 精密工程, 2016, 24(4):796-803.
YANG H SH, LI ZH L, FAN Y CH, et al.. Focusing mechanism with equal output forces for space camera[J]. Optics and Precision Engineering, 2016, 24(4):796-803. (in Chinese)
周超群, 陈小安, 合烨.伺服系统中精密传动装置精度分析[J].现代制造工程, 2007(4):73-76.
ZHOU CH Q, CHEN X A, HE Y. Precision analysis of mechanical transmission in servo system[J]. Modern Manufacturing Engineering, 2007(4):73-76. (in Chinese)
KOYAMA T, WATANABE K, NAGAI K, et al.. A study on timing belt noise (how to reduce resonant noise)[J]. Journal of Mechanical Design, 1990, 112(3):419-423.
WATANABE K, KOYAMA T, NAGAI K, et al.. A study on timing belt noise (theoretical analysis for forced transverse vibration of timing belt with parametric excitation)[J]. Journal of Mechanical Design, 1990, 112(3):424-429.
KAGOTANI M, UEDA H. Transmission error in synchronous belt with resonance under installation tension[C]. ASME 2011 International Mechanical Engineering Congress and Exposition, ASME, 2011, 8: 871-880.
SUSUMU S, MINORU K. Influence of installation tension on transmission error due to resonance in a synchronous belt[J]. Journal of Mechanical Design, 2014, 137(1):V002T07A006.
KAGOTANI M, UEDA H. Transmission error due to resonance in synchronous belt drive with eccentric pulley[C]. ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME, 2016: V008T10A004.
BASER O, KONUKSEVEN E I. Theoretical and experimental determination of capstan drive slip error[J]. Mechanism and Machine Theory, 2010, 45(6):815-827.
KILIC E, DOLEN M, KOKU A B. Experimental evaluation of cable-drum systems as linear motion sensors[C]. Proceedings of 2011 IEEE International Conference on Mechatronics, IEEE, 2011: 666-671.
LU Y F, FAN D P. Transmission backlash of precise cable drive system[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2013, 227(10):2256-2267.
WERKMEISTER J, SLOCUM A. Theoretical and experimental determination of capstan drive stiffness[J]. Precision Engineering, 2007, 31(1):55-67.
SNOW E R. The Load/deflection Behavior of Pretensioned Cable-pulley Transmission Mechanisms[D]. Massachusetts: Massachusetts Institute of Technology, 2007:
RAJH M, GLODEŽ S, FLAŠKER J, et al.. Design and analysis of an fMRI compatible haptic robot[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(2):267-275.
TOWNSEND W T, GUERTIN J A. Teleoperator slave-WAM design methodology[J]. Industrial Robot, 1999, 26(3):167-177.
LU Y F, LIAO H B, HEI M, et al.. Development of a differential cable drive mechanism for acquiring tracking and pointing application[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2015, 229(17):3191-3200.
罗护. 基于精密绳传动的导引头机构若干问题研究[D]. 长沙: 国防科学技术大学, 2008
LUO H. Research on Cable-drive Seeker Mechanism[D]. Changsha: National University of Defense Technology, 2008.
OLARU I M C, KRUT S, PIERROT F. Novel mechanical design of biped robot SHERPA using 2 DOF cable differential modular joints[C]. Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2009: 4463-4468.
张林安. 微创手术机器人柔性工具机构综合与主从控制策略研究[D]. 天津: 天津大学, 2014.
ZHANG L A. Type Synthesis on Flexible Instrument of MIS Robot and the Study of Master-slave Control Strategy[D]. Tianjin: Tianjin University, 2014. (in Chinese)
鲁亚飞. 精密柔索传动机理与设计方法研究[D]. 长沙: 国防科学技术大学, 2013.
LU Y F. Study on the Principle and Design Method of the Precise Cable Drive[D]. Changsha: National University of Defense Technology, 2013. (in Chinese)
CHUA J Y. Design of a Wearable Cobot[D]. Florida: Florida State University, 2006.
RAHMATI Z, BEHZADIPOUR S. Analysis and design of a cable-driven mechanism for a spherical surgery robot[C]. Proceedings of the 22nd Iranian Conference on Biomedical Engineering, IEEE, 2015: 221-226.
Carl Stahl SAVA Industries, INC[Z/OL]. http://www.savacable.com/ http://www.savacable.com/ .
MAZUMDAR A, SPENCER S J, HOBART C, et al.. Synthetic fiber capstan drives for highly efficient, torque controlled, robotic applications[J]. IEEE Robotics and Automation Letters, 2017, 2(2):554-561.
SCHIELE A, LETIER P, VAN DER L R, et al. . Bowden cable actuator for force-feedback exoskeletons[C]. Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2006: 3599-3604.
GREBENSTEIN M, CHALON M, HIRZINGER G, et al. . Antagonistically driven finger design for the anthropomorphic DLR hand arm system[C]. Proceedings of the 10th IEEE-RAS International Conference on Humanoid Robots, IEEE, 2010: 609-616.
TOWNSEND W T. The Effect of Transmission Design on Force-controlled Manipulator Performance[D]. Massachusetts: Massachusetts Institute of Technology, 1988.
PIETRO D M D. Development of an Actively Compliant Underwater Manipulator[D]. Massachusetts: Massachusetts Institute of Technology, 1988.
QU J X, LI J H, ZHANG L N, et al. . Design of a novel force-reflecting haptic device for minimally invasive surgery robot[C]. Proceedings of 2013 ICME International Conference on Complex Medical Engineering, IEEE, 2013: 357-362.
SOFKA J. New Generation of Gimbals Systems for Aerospace Applications[D]. Binghamton: State University of New York at Binghamton, 2007.
MASSIE T H, SALISBURY J K. The PHANToM haptic interface: a device for probing virtual objects[C]. Proceedings of the ASME Winter annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, ASME, 1994: 295-300.
韩海姣. 导引头钢丝绳传动张紧装置研制及加速寿命试验模型研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
HAN H J. Research on the Elastic Tensioning Device for Rope Drive in Seeker and Accelerated Life Test Model[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese)
NEAL J D. Design and Control of a Cable-driven Sectorial Rotary Actuator for Open-loop Force Control[D]. Virginia: Virginia Tech, 2015.
0
浏览量
771
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构