浏览全部资源
扫码关注微信
南京理工大学 电子工程与光电技术学院, 江苏 南京 210094
[ "骆乐(1986-), 男, 江苏宿迁人, 博士研究生, 主要从事激光雷达三维成像、微光成像器件的研究。E-mail:wslla@126.com" ]
何伟基(1982-), 男, 广东韶关人, 博士, 副研究员, 2004年、2010年于南京理工大学分别获得学士、博士学位, 主要从事光电探测与光电成像的研究。E-mail:hewj@mail.njust.edu.cn HE Wei-ji, E-mail:hewj@mail.njust.edu.cn
收稿日期:2017-09-30,
录用日期:2017-11-6,
纸质出版日期:2018-05-25
移动端阅览
骆乐, 吴长强, 林杰, 等. 基于光子计数激光雷达的时域去噪[J]. 光学 精密工程, 2018,26(5):1175-1180.
le LUO, Chang-qiang WU, Jie LIN, et al. Time-domain denoising based on photon-counting LiDAR[J]. Optics and precision engineering, 2018, 26(5): 1175-1180.
骆乐, 吴长强, 林杰, 等. 基于光子计数激光雷达的时域去噪[J]. 光学 精密工程, 2018,26(5):1175-1180. DOI: 10.3788/OPE.20182605.1175.
le LUO, Chang-qiang WU, Jie LIN, et al. Time-domain denoising based on photon-counting LiDAR[J]. Optics and precision engineering, 2018, 26(5): 1175-1180. DOI: 10.3788/OPE.20182605.1175.
激光雷达传统的成像方法需要经过长时间积分探测生成光子计数统计直方图的方式来减少背景噪声的影响,获得目标场景的深度估计信息。为了快速准确地获取目标场景的3D图像,提出基于光子计数激光雷达的三维距离图像时域去噪算法。该算法不需要生成光子计数统计直方图,利用信号和噪声在时间轴上不同的分布特性,结合了泊松过程统计规律。此算法提高了信号的探测概率,能够在低信噪比的环境下将信号和噪声分离,获得目标场景准确的3D图像。实验结果表明在低信噪比的条件下,此算法获得深度图像的RMSE与传统基于最大似然估计成像方法相比成像精度至少提高了3倍。有利于激光雷达三维成像在高背景噪声环境下的使用,拓宽了激光雷达的应用范围。
For decreasing the effect of background noise
the traditional imaging method of laser radar requires take long time in accumulation sampling and generating statistical histogram of photon countingto obtain the depth estimation of target. A 3D time-domain denoising algorithm based on photon-counting laser radar was proposed in this paper. Combined with the Poisson statistical model
the method proposed did not need to generate photon counting statistic histogram but used the different distribution feature of signal and noise in the time-domain
which increased the detection probability of signal photons and separated the signal from the noise to recover an accurate depth image of scene in the environment of low signal-to-noise rate. Experimental results demonstrate that the method increases the imaging accuracy by 3-fold at least comparing to the traditional maximum likelihood depth estimation. The method is conducive to the use of laser radar 3D imaging in high background noise environment and could broaden the application range of Lidar.
KIRMANIA, VENKATRAMAN D, SHIN D, et al .. First-photon imaging[J]. Science , 2014, 343(6166):58-61.
SHIND, KIRMANI A, COLACO A, et al . . Parametric Poisson process imaging[C]. Proceedings of 2013 IEEE Global Conference on Signal and Information Processing , IEEE, 2013: 1053-1056.
KIRMANIA, COLAÇO A, SHIN D, et al .. Spatio-temporal regularization for range imaging with high photon efficiency[J]. Proceedings of SPIE , 2013, 8858:88581F.
KONG H J, KIM T H, JO S E, et al .. Smart three-dimensional imaging LADAR using two Geiger-mode avalanche photodiodes[J]. Optics Express , 2011, 19(20):19323-19329.
ZHANG Z J, ZHAO Y, ZHANG Y, et al .. A real-time noise filtering strategy for photon counting 3D imaging Lidar[J]. Optics Express , 2013, 21(8):9247-9254.
FOUCHED G. Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors[J]. Applied Optics , 2003, 42(27):5388-5398.
HENRIKSSONM. Detection probabilities for photon-counting avalanche photodiodes applied to a laser radar system[J]. Applied Optics , 2005, 44(24):5140-5147.
司马博羽. 光子计数激光三维成像系统设计和实现[D]. 南京: 南京理工大学, 2013.
SIMA B Y. Photon-counting laser radar 3d imaging system design and Implementation [D]. Nanjing: Nanjing University of Science and Technology, 2013. (in Chinese)
SNYDERD L. Random Point Processes [M]. New York, NY, USA:Wiley, 1975.
MCCARTHYA, REN X M, FRERA A D, et al .. Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector[J]. Optics Express , 2013, 21(19):22098-22113.
LIANG Y, HUANG J H, REN M, et al .. 1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity[J]. Optics exprEss , 2014, 22(4):4662-4670.
ZHOU H, HE Y H, YOU L X, et al .. Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector[J]. Optics Express , 2015, 23(11):14603-14611.
MASSAJ S, BULLER G S, WALKER A C, et al .. Time-of-flight optical ranging system based on time-correlated single-photon counting[J]. Applied Optics , 1998, 37(31):7298-7304.
SCHWARZB. LIDAR:Mapping the world in 3D[J]. Nature Photonics , 2010, 4(7):429-430.
STOKERJ, HARDING D, PARRISH J. The need for a national LIDAR dataset:photogrammetric engineering and remote sensing[J]. Photogrammetric Engineering and Remote Sensing , 2008, 74(9):1066-1068.
CHEN F, BROWN G M, SONG M. Overview of three-dimensional shape measurement using optical methods[J]. Optical Engineering , 2000, 39(1):10-22.
UMASUTHANM, WALLACE A M, MASSA J S, et al .. Processing time-correlated single photon counting data to acquire range images[J]. IEE Proceedings-Vision, Image and Signal Process , 1998, 145(4):237-243.
SHIND, KIRMANI A, GOYAL V K, et al .. Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors[J]. IEEE Transactions on Computational Imaging , 2015, 1(2):112-125.
0
浏览量
422
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构