浏览全部资源
扫码关注微信
辽宁工程技术大学 测绘与地理科学学院 遥感科学与应用研究院, 辽宁 阜新 123000
[ "赵泉华(1978-), 女, 河北承德人, 博士, 教授, 博士生导师, 2001年于河北理工学院获得学士学位, 2004年、2009于辽宁工程技术大学分别获得硕士、博士学位, 主要从事遥感图像建模与分析随机几何在遥感图像处理中的应用研究。E-mail:zqhlby@163.com" ]
[ "张洪云(1992-), 女, 辽宁辽阳人, 博士研究生, 2014年、2017年于辽宁工程技术大学分别获得学士、硕士学位, 主要从事遥感图像信息提取研究。E-mail:zhanghongyun0310@163.com" ]
[ "李玉(1963-), 男, 吉林长春人, 博士, 教授, 博士生导师, 1984年于西北电讯工程学院获得学士学位, 1991年于东南大学获得硕士学位, 2006年于瑞尔森获得硕士学位, 2010年于滑铁卢大学获得博士学位, 主要从事遥感数据处理理论与应用基础研究, 包括空间统计学、随机几何、模糊数学在遥感数据建模与分析方面的应用, 地物目标几何以及特征提取。E-mail:lntuliyu@163.com" ]
收稿日期:2017-09-15,
录用日期:2017-11-6,
纸质出版日期:2018-05-25
移动端阅览
赵泉华, 张洪云, 李玉. 采用非规则标识点过程的LiDAR点云数据目标提取[J]. 光学 精密工程, 2018,26(5):1201-1210.
Quan-hua ZHAO, Hong-yun ZHANG, Yu LI. Target extraction from LiDAR point cloud data using irregular geometry marked point process[J]. Optics and precision engineering, 2018, 26(5): 1201-1210.
赵泉华, 张洪云, 李玉. 采用非规则标识点过程的LiDAR点云数据目标提取[J]. 光学 精密工程, 2018,26(5):1201-1210. DOI: 10.3788/OPE.20182605.1201.
Quan-hua ZHAO, Hong-yun ZHANG, Yu LI. Target extraction from LiDAR point cloud data using irregular geometry marked point process[J]. Optics and precision engineering, 2018, 26(5): 1201-1210. DOI: 10.3788/OPE.20182605.1201.
针对LiDAR点云数据目标投影几何的非规则性,提出非规则标识点过程的LiDAR点云数据目标提取方法。首先,在投影平面上定义随机点过程,利用其随机点定位该平面上的目标投影,对每一随机点生成一组节点集以建模该目标投影几何,作为目标标识;假设地物目标高程值服从独立同一高斯分布,从而得到LiDAR点云数据高程测度模型;在贝叶斯理论架构下建立目标几何提取模型,并结合可逆跳变马尔可夫链蒙特卡罗(Reversible Jump Markov Chain Monte Carlo,RJMCMC)算法模拟后验分布以及估计各参数;最后根据最大后验概率准则,求解最优目标提取模型。采用提出方法对LiDAR点云数据进行目标提取,根据实验结果可以看出,算法得到的检测精度均达到80%以上,最高精度为99.43%,得到了较好的检测结果。本文将传统的规则标识点过程拓展到非规则标识点过程,可以有效拟合任意形状目标几何。定性和定量的实验结果表明了该方法的可行性、有效性和准确性。
In order to realize the arbitrary shape object extraction from LiDAR point cloud data
a method based on irregular marked point process was proposed. Firstly
a random point process was defined on ground plan
in which random point positioned the object projection on the plan. Then the marks associating individual points were defined with a set of nodes to depict the shape of object on the ground plan. Assumed that the elevation values of ground points followed an independent and identical Gauss distribution
and that of objects were also characterized by Gauss distributions individually. According to the Bayesian inference
the object extraction model was obtained; The RJMCMC algorithm was designed to simulate the posterior distribution and estimate the parameters. Finally
the optimal target extraction model was obtained according to the maximum a posteriori. LiDAR point cloud data was extracted by using the proposed method. According to the experimental results
it can be seen that the detection accuracy of the algorithm is above 80%
the highest accuracy is 99.43%. In this paper
the traditional rule mark process is extended to irregular marking process
and it can be used to fit the geometry of arbitrary shape target effectively. Experimental results show that this method can effectively fit the arbitrary shape objects.
刘志青, 李鹏程, 郭海涛, 等.基于相关向量机的机械LiDAR点云数据分类[J].红外与激光工程, 2016, 45(S1):98-104.
LIU ZH Q, LI P CH, GUO H T, et al .. Airborne LiDAR point cloud data classification based on relevance vector machine[J]. Infrared and Laser Engineering, 2016, 45(S1):98-104. (in Chinese)
苏春梅, 曹殿才, 段凯, 等.基于机载LiDAR数据制作高精度DEM产品研究[J].测绘与空间地理信息, 2017, 40(2):72-74, 78.
SU CH M, CAO D C, DUAN K, et al .. Research on high precision DEM products based on airborne LiDAR data[J]. Geomatics & Spatial Information Technology, 2017, 40(2):72-74, 78. (in Chinese)
王盈, 黄建明, 刘玉, 等.空间目标激光雷达成像仿真技术[J].红外与激光工程, 2016, 45(9):102-107.
WANG Y, HUANG J M, LIU Y, et al .. Simulation of Lidar imaging for space target[J]. Infrared and Laser Engineering, 2016, 45(9):102-107. (in Chinese)
惠振阳, 胡友健.机载LiDAR点云中道路的提取方法[J].测绘科学, 2017, 42(3):70-74.
HUI ZH Y, HU Y J. A review on road extraction methods from airborne LiDAR[J]. Science of Surveying and Mapping, 2017, 42(3):70-74. (in Chinese)
周平华, 熊彪.半自动机载LiDAR点云建筑物三维重建方法[J].测绘科学, 2017, 42(5):128-130, 135.
ZHOU P H, XIONG B. 3D reconstruction method of buildings of semi-automatic airborne LiDAR point clouds[J]. Science of Surveying and Mapping, 2017, 42(5):128-130, 135. (in Chinese)
向云飞, 余代俊, 张兵, 等.基于Lidar数据和倾斜摄影的城市三维模型构建[J].测绘工程, 2016, 25(12):65-69.
XIANG Y F, YU D J, ZHANG B, et al .. The construction of 3D city model based on Lidar data and tilt photography[J]. Engineering of Surveying and Mapping, 2016, 25(12):65-69. (in Chinese)
陈性义, 黄迟, 倪标.融合LiDAR数据与航空影像的面向对象水体提取[J].测绘科学, 2017, 42(3):114-119.
CHEN X Y, HUANG CH, NI B. Water extraction based on LiDAR data and aerial images using object-oriented technology[J]. Science of Surveying and Mapping, 2017, 42(3):114-119. (in Chinese)
刘志青, 李鹏程, 陈小卫, 等.基于信息向量机的机载激光雷达点云数据分类[J].光学 精密工程, 2016, 24(1):210-219.
LIU ZH Q, LI P CH, CHEN X W, et al .. Classification of airborne LiDAR point cloud data based on information vector machine[J]. Opt. Precision Eng., 2016, 24(1):210-219. (in Chinese)
赵传, 张保明, 陈小卫, 等.一种基于LiDAR点云的建筑物提取方法[J].测绘通报, 2017(2):35-39.
ZHAO CH, ZHANG B M, CHEN X W, et al .. A method of extracting building based on LiDAR point clouds[J]. Bulletin of Surveying and Mapping, 2017(2):35-39. (in Chinese)
RUE H, SYVERSVEEN A R. Bayesian object recognition with Baddeley's delta loss[J]. Advances in Applied Probability, 1998, 30(1):64-84.
LAFARGE F, FARB G G, DESCOMBES X. Geometric feature extraction by a multimarked point process[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9):1597-1609.
ZHAO Q H, LI Y, HE X J. Building extraction from LIDAR point cloud data using marked point process[J]. Journal of the Indian Society of Remote Sensing, 2014, 42(3):529-538.
LI Y, LI J. Oil spill detection from SAR intensity imagery using a marked point process[J]. Remote Sensing of Environment, 2010, 114(7):1590-1601.
谢欢. 标记点过程在LIDAR点云树冠目标提取中的应用[D]. 西安: 长安大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10710-1016749685.htm
XIE H. Application of marked point process in crown extraction from LIDAR point cloud [D]. Xi'an: Chang'an University, 2016. (in Chinese)
ORTNER M, DESCOMBE X, ZERUBIA J. A marked point process of rectangles and segments for automatic analysis of digital elevation models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(1):105-119.
GREEN P J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination[J]. Biometrika, 1995, 82(4):711-732.
0
浏览量
153
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构