浏览全部资源
扫码关注微信
1.长春师范大学 计算机科学与技术学院, 吉林 长春 130032
2.吉林大学 计算机科学与技术学院, 吉林 长春 130012
3.吉林大学 学报编辑部, 吉林 长春 130012
[ "耿庆田(1972-), 男, 江苏邳州人, 副教授, 2005年于吉林大学获得硕士学位, 主要从事计算机网络与智能信息系统方面的研究。E-mail:qtgeng@163.com" ]
[ "赵浩宇(1991-), 男, 吉林长春人, 2016年于吉林大学获得硕士学位, 主要从事数字出版与智能信息系统方面的研究。E-mail:zhaohaoyu@jlu.edu.cn" ]
收稿日期:2017-12-27,
录用日期:2018-1-24,
纸质出版日期:2018-05-25
移动端阅览
耿庆田, 赵浩宇, 王宇婷. 基于改进SIFT特征提取的车标识别[J]. 光学 精密工程, 2018,26(5):1267-1274.
Qing-tian GENG, Hao-yu ZHAO, Yu-ting WANG. A vehicle logo recognition algorithm based on the improved SIFT feature[J]. Optics and precision engineering, 2018, 26(5): 1267-1274.
耿庆田, 赵浩宇, 王宇婷. 基于改进SIFT特征提取的车标识别[J]. 光学 精密工程, 2018,26(5):1267-1274. DOI: 10.3788/OPE.20182605.1267.
Qing-tian GENG, Hao-yu ZHAO, Yu-ting WANG. A vehicle logo recognition algorithm based on the improved SIFT feature[J]. Optics and precision engineering, 2018, 26(5): 1267-1274. DOI: 10.3788/OPE.20182605.1267.
为减少SIFT车标识别算法中检测极值点的冗余以及各种图像变化因素的不利影响,提出了基于边缘约束和全局结构化的改进SIFT算法。利用图像不变矩理论及图像边缘检测算法只对目标图像的边缘区域检测,剔除与车标识别区域无关的极值点;同时将特征点邻域划分为圆形并计算出同心圆内像素点最大曲率来构建全局SIFT组合特征向量,使SIFT描述子具有全局描述特性;并结合SVM模型作为车标图像特征向量的分类器进行特征分类、识别。仿真实验结果表明:改进的SIFT算法可以减少冗余极值点约25%~45%,提高了检测极值点的有效性;使车标平均识别率达到97%以上,改善了识别实时性。改进SIFT的车标识别方法与几种常用的图像特征提取算子相比较具有识别率高、识别速度快的优点。
In order to reduce redundancy of detecting extreme point and various adverse effects of image change factors during using SIFT vehicle logo recognition algorithms. An improved SIFT algorithm based on edge constraint and global structure was proposed
it took advantages of the image moment invariant theory and the image edge detection algorithm to only detect edge regions of target image
eliminating extreme points that have nothing to do with vehicle logo recognition regions
and it divided each feature point neighborhood into circular regions and calculated the maximum curvature of pixel in each group of concentric circles that obtained by the division to construct the global SIFT combination feature vectors
which made the SIFT descriptors had a global describing nature. It also combined the SVM model such that a feature vector classifier of vehicle logo image was created to classify features and recognize vehicle logos. The simulation experiment data indicates that the improved SIFT vehicle logo recognition algorithm may reduce redundant extreme points by about 25 to 45 percent
which enhances the effectiveness of detecting extreme points
and make the average recognition rate reach more than 97 percent
which improves the real-time trait of recognition. It can be seen that higher recognition rate and faster recognition speed can be obained in comparison with several common image feature extraction operators.
杨飚, 周阳.基于HOG和ASIFT特征的车标二次识别[J].计算机仿真, 2015, 32(9):194-198.
YANG B, ZHOU Y.Vehicle-logo twice recognition method based on HOG and ASIFT feature[J].Computer Simulation, 2015, 32(9):194-198. (in Chinese)
GOU C, WANG K, YAO Y, et al .. Vehicle license plate recognition based on extremal regions and restricted boltzmann machines[J] . IEEE Transactions on Intelligent Transportation Systems, 2015, 17(4):1-12.
WANG S K, LIU L, XU X, et al .. Vehicle logo recognition based on local feature descriptor[J]. Applied Mechanics & Materials, 2013, 263-266:2418-2421.
ZHANG Z, WANG C. The research of vehicle plate recognition technical based on BP neural network[J]. Aasri Procedia, 2012, 1(4):74-81.
屈玉福, 刘子悦, 江云秋, 等.自适应变尺度特征点提取方法[J].光学 精密工程, 2017, 25(1):188-197.
QU Y F, LIU Z Y, JIANG Y Q, et al ..Self-adaptative variable-metric feature point extraction method[J].Opt. Precision Eng., 2017, 25(1):188-197. (in Chinese)
李玉峰, 李广泽, 谷绍湖, 等.基于区域分块与尺度不变特征变换的图像拼接算法[J].光学 精密工程, 2016, 24(5):1197-1205.
LI Y F, LI G Z, GU SH H, et al .. Image mosaic algorithm based on area blocking and SIFT[J].Opt. Precision Eng., 2016, 24(5):1197-1205. (in Chinese)
PSYLLOS A P, KAYAFAS E. Vehicle logo recognition using a SIFT-based enhanced matching scheme[J].IEEE Transactions on Intelligent Transportation Systems, 2010, 11(2):322-328.
刘志文, 刘定生, 刘鹏.应用尺度不变特征变换的多源遥感影像特征点匹配[J].光学 精密工程, 2013, 21(8):2146-2153.
LIU ZH W, LIU D SH, LIU P. SIFT feature matching algorithm of multi-source remote image[J].Opt. Precision Eng., 2013, 21(8):2146-2153. (in Chinese)
曾峦, 王元钦, 谭久彬.改进的SIFT特征提取和匹配算法[J].光学 精密工程, 2011, 19(6):1391-1397.
ZENG L, WANG Y Q, TAN J B. Improved algo-rithm for SIFT feature extraction and matching[J].Opt. Precision Eng., 2011, 19(6):1391-1397. (in Chinese)
许佳佳.结合Harris与SIFT算子的图像快速配准算法[J].中国光学, 2015, 8(4):574-581.
XU J J.Fast image registration method based onHarris and SIFT algorithm[J].Chinese Optics, 2015, 8(4):574-581. (in Chinese)
田浩南, 张叶.基于边缘及特征点匹配的立体图像质量评价[J].液晶与显示, 2015, 30(4):666-672.
TIAN H N, ZHANG Y. Quality evaluation of stereo image based on edge and characteristic point matching[J].Chinese Journal of Liquid Crystals and Displays, 2015, 30(4):666-672. (in Chinese)
陈莹, 朱明, 刘剑, 等.高斯混合模型自适应微光图像增强[J].液晶与显示, 2015, 30(2):300-309.
CHEN Y, ZHU M, LIU J, et al .. Automatic low light level image enhancement using Gaussian mixture modeling[J].Chinese Journal of Liquid Crystals and Displays, 2015, 30(2):300-309. (in Chinese)
代琨, 于宏毅, 仇文博, 等.基于SVM的网络数据无监督特征选择算法[J].吉林大学学报(工学版), 2015, 45(2):576-582.
DAI K, YU H Y, QIU W B, et al .. Unsupervised feature selection algorithm based on support vector machine for network data[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(2):576-582. (in Chinese)
张迪飞, 张金锁, 姚克明, 等.基于SVM分类的红外舰船目标识别[J].红外与激光工程, 2016, 45(1):167-172.
ZHANG D F, ZHANG J S, YAO K M, et al .. Infrared ship-target recognition based on SVM classification[J]. Infrared and Laser Engineering, 2016, 45(1):167-172. (in Chinese)
0
浏览量
726
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构