浏览全部资源
扫码关注微信
1.南京航空航天大学 机电学院, 江苏 南京 210016
2.盐城工学院 汽车工程学院, 江苏 盐城 224051
[ "李耀(1989-), 男, 山东临沂人, 博士研究生, 2012年于山东农业大学获得学士学位, 2015年于南京航空航天大学获得硕士学位, 主要从事柔性并联机构与隔振技术的研究。E-mail:liyaokkx@nuaa.edu.cn" ]
[ "吴洪涛(1962-), 男, 江苏扬州人, 博士, 教授, 博士生导师, 1982年于东北重型机械学院获得学士学位, 1985年、1992年于天津大学分别获得硕士、博士学位, 主要从事多体系统动力学研究。E-mail:mehtwu@126.com" ]
收稿日期:2018-01-22,
录用日期:2018-3-14,
纸质出版日期:2018-06-25
移动端阅览
李耀, 吴洪涛, 杨小龙, 等. 圆弧柔性铰链的优化设计[J]. 光学 精密工程, 2018,26(6):1370-1379.
Yao LI, Hong-tao WU, Xiao-long YANG, et al. Optimization design of circular flexure hinges[J]. Optics and precision engineering, 2018, 26(6): 1370-1379.
李耀, 吴洪涛, 杨小龙, 等. 圆弧柔性铰链的优化设计[J]. 光学 精密工程, 2018,26(6):1370-1379. DOI: 10.3788/OPE.20182606.1370.
Yao LI, Hong-tao WU, Xiao-long YANG, et al. Optimization design of circular flexure hinges[J]. Optics and precision engineering, 2018, 26(6): 1370-1379. DOI: 10.3788/OPE.20182606.1370.
柔性铰链是高精度柔性机构的关键部件,其运动精度与运动范围影响着柔性机构的性能,本文对圆弧柔性铰链进行了柔度矩阵推导,并依据柔度方程进行优化设计。采用结构矩阵法建立了圆弧柔性铰链的柔度方程,对矩形截面的翘曲抗扭刚度进行推导,得到了约束扭转状态下的扭转柔度近似方程。为相对长度较小铰链的扭转刚度精确求解提供了依据。对比理论计算结果与有限元分析结果,结果显示扭转柔度的最大相对误差在10%左右,其余方向柔度相对误差低于6%,验证了柔度方程的准确性。采用正交试验直观分析法得到柔性铰链各设计参数对转动刚度的灵敏度,并利用多目标遗传算法对柔性铰链的转动柔度以及轴向刚度两个目标进行了参数优化。通过优化结果与设计经验选取参数的对比,发现优化后圆弧柔性铰链的弯曲柔度提升了5.12%,同时铰链的轴向刚度提升了4.72%,证明针对圆弧柔性铰链的优化设计具有明显效果。
Flexure hinges are the key components of high-precision flexible mechanisms. Their motion precision and range affect the performance of flexible mechanisms. Herein
the flexibility matrix of a circular flexure hinge was derived for optimal design. The flexibility equation of the circular flexure hinge was established using the structure matrix method. The warping and torsional stiffness of the rectangular section was deduced. The approximate equation of torsional flexibility under constrained torsional state was obtained
providing a basis for the exact solution of torsional stiffness of the hinge with small relative length. Compared with the finite element method
the maximum relative error of torsional flexibility is approximately 10%
and the relative error of the remaining flexibility is less than 6%
which verifies the accuracy of the flexibility equation. The sensitivity of the design parameters of the flexure hinge to rotational stiffness was obtained by the orthogonal experimental design. The rotation ability and axial stiffness of the flexure hinge were optimized by the multi-objective genetic algorithm. By comparing the optimization results with the parameters selected according to the design experience
it is found that the bending flexibility of the optimized circular flexure hinge increased by 5.12% and the axial stiffness of the hinge increased by 4.72%. It is proved that the optimal design of the circular flexure hinge has obvious effects.
HOWELL L L. Compliant Mechanisms[M]. New York: Wiley Interscience, 2001.
WASON J D, WEN J T, DAGALAKIS N G. Dextrous manipulation of a micropart with multiple compliant probes through visual force feedback[C]. 2011 IEEE International Conference on Robotics and Automation, 2011: 5991-5996.
CHEN W, CHEN S, QU J, et al.. A large-range compliant remote center of motion stage with input/output decoupling[J]. Precision Engineering, 2018, 51:468-480.
LI J, LIU H, ZHAO H. A compact 2-DOF piezoelectric-driven platform based on "Z-shaped" flexure Hinges[J]. Micromachines, 2017, 8(8):245.
XU Q, TAN K K. Advanced control of piezoelectric micro-/nano-positioning systems[J]. Advances in Industrial Control, 2016.
YANG X L, WU H T, LI Y, et al.. Dynamic isotropic design and decentralized active control of a six-axis vibration isolator via Stewart platform[J]. Mechanism & Machine Theory, 2017, 117:244-252.
YANG X L, WU H T, LI Y, et al.. A dual quaternion solution to the forward kinematics of a class of six-DOF parallel robots with full or reductant actuation[J]. Mechanism & Machine Theory, 2017, 107:27-36.
CAI K, TIAN Y, WANG F, et al.. Development of a piezo-driven 3-DOF stage with T-shape flexible hinge mechanism[J]. Robotics and Computer-Integrated Manufacturing, 2016, 37(C):125-138.
黄卫清, 党冰楠, 王寅, 等.双向作动大行程二自由度稳像机构[J].光学 精密工程, 2017, 25(6):1494-1501.
HUANG W Q, DANG B N, WANG Y, et al.. Two-freedom image stabilization institution of large stroke of bidirectional actuation[J]. Opt. Precision Eng., 2017, 25(6):1494-1501.(in Chinese)
马立, 杨斌, 田应仲, 等. 3-PRR平面三自由度纳米定位平台的设计[J].光学 精密工程, 2017, 25(7):1866-1873.
MA L, YANG B, TIAN Y ZH, et al.. Design of 3-DOF planar nano-positioning platform with 3-PRR structure[J].. Opt. Precision Eng., 2017, 25(7):1866-1873. (in Chinese)
董世则, 郭抗, 李显凌, 等.光学元件狭缝柔性调节机构的设计与分析[J].中国光学, 2017, 10(6):790-797.
DONG SH Z, GUO K, LI X L, et al.. Design and analysis of adjustment mechanism with slit diaphragm flexures for optical elements[J]. Chinese Optics, 2017, 10(6):790-797. (in Chinese)
张雷, 柯善良, 李林, 等.超轻反射镜串联柔性支撑结构优化设计[J].光子学报, 2018, 47(1):0122001.
ZHANG L, KE SH L, LI L, et al.. Optimum design of ultra-light mirror series flexible support structure[J]. Acta Photonica Sinica, 2018, 47(1):0122001. (in Chinese)
WU Y, ZHOU Z. Design calculations for flexure hinges[J]. Review of Scientific Instruments, 2002, 73(8):3101-3106.
LOBONTIU N, PAINE J S N, O'MALLEY E, et al.. Parabolic and hyperbolic flexure hinges:flexibility, motion precision and stress characterization based on compliance closed-form equations[J]. Precision Engineering, 2002, 26(2):183-192.
LOBONTIU N, CULLIN M, PETERSEN T, et al.. Planar compliances of symmetric notch flexure hinges:the right circularly corner-filleted parabolic design[J]. IEEE Transactions on Automation Science & Engineering, 2014, 11(1):169-176.
CHEN G, SHAO X, HUANG X. A new generalized model for elliptical arc flexure hinges[J]. Review of Scientific Instruments, 2008, 79(9):095103.
MIN L, ZHANG X, FATIKOW S. Design and analysis of a high-accuracy flexure hinge[J]. Review of Scientific Instruments, 2016, 87(5):055106.
PARVARI RAD F, VERTECHY R, BERSELLI G, et al.. Analytical compliance analysis and finite element verification of spherical flexure hinges for spatial compliant mechanisms[J]. Mechanism & Machine Theory, 2016, 101:168-180.
PARVARI RAD F, BERSELLI G, VERTECHY R, et al.. Design and stiffness analysis of a compliant spherical chain with three degrees of freedom[J]. Precision Engineering, 2017, 47:1-9.
TIAN Y, SHIRINZADEH B, ZHANG D, et al.. Three flexure hinges for compliant mechanism designs based on dimensionless graph analysis[J]. Precision Engineering, 2010, 34(1):92-100.
CHEN G, JIA J, HAN Q. Geometrical profile optimization of elliptical flexure hinge using a modified particle swarm algorithm[C]. Lecture Notes in Computer Science, 2005: 533-542.
ZELENIKA S, MUNTEANU M G, DE BONA F. Optimized flexural hinge shapes for microsystems and high-precision applications[J]. Mechanism & Machine Theory, 2009, 44(10):1826-1839.
YOUNG W C, BUDYNAS R G. Roark's Formulas for Stress and Strain[M]. 7th ed. . NewYork: McGraw Hill, 2002.
TSEYTLIN Y M. Notch flexure hinges:An effective theory[J]. Review of Scientific Instruments, 2002, 73(9):3363-3368.
LOBONTIU N, PAINE J S N, GARCIA E, et al.. Corner-filleted flexure hinges[J]. Journal of Mechanical Design, 2001, 123(3):346-352.
CHOI S B, HAN S S, HAN Y M, et al.. A magnification device for precision mechanisms featuring piezoactuators and flexure hinges:Design and experimental validation[J]. Mechanism and Machine Theory, 2007, 42(9):1184-1198.
LOBONTIU N, GARCIA E, CANFIELD S. Torsional stiffness of several variable rectangular cross-section flexure hinges for macro-scale and MEMS applications[J]. Smart Materials & Structures, 2003, 13(1):12-19.
COWPER G R. The shear coefficients in Timoshenko's beam theory[J]. Journal of Applied Mechanics, 1966, 33(2):335-340.
CHEN G, HOWELL L L. Two general solutions of torsional compliance for variable rectangular cross-section hinges in compliant mechanisms[J]. Precision Engineering, 2009, 33(3):268-274.
YONG Y K, LU T F, HANDLEY D C. Review of circular flexure hinge design equations and derivation of empirical formulations[J]. Precision Engineering, 2008, 32(2):63-70.
HEARN E J. Mechanics of Materials: An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Components[M]. Pergamon Press, 1977.
卢倩, 黄卫清, 王寅, 等.深切口椭圆柔性铰链优化设计[J].光学 精密工程, 2015, 23(1):206-215.
LU Q, HUANG W Q, WANG Y, et al.. Optimization design of deep-notch elliptical flexure hinges[J].Opt. Precision Eng., 2015, 23(1):206-215.(in Chinese)
0
浏览量
942
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构