浏览全部资源
扫码关注微信
1.浙江大学 浙江省三维打印工艺与装备重点实验室, 浙江 杭州 310027
2.衢州学院 浙江省空气动力装备技术重点实验室, 浙江 衢州 324000
3.浙江永力达数控科技股份有限公司, 浙江 衢州 324000
[ "邓小雷(1981-), 男, 浙江衢州人, 博士, 副教授, 2014年于浙江大学获博士学位, 主要从事数控技术与装备自动化技术的研究。E-mail:dxl@zju.edu.cn" ]
[ "傅建中(1968-), 男, 浙江衢州人, 博士生导师, 教授, 1996年于浙江大学获博士学位, 主要从事智能制造技术与装备研究。E-mail:fjz@zju.edu.cn" ]
收稿日期:2017-09-11,
录用日期:2017-11-19,
纸质出版日期:2018-06-25
移动端阅览
邓小雷, 林欢, 王建臣, 等. 机床主轴热设计研究综述[J]. 光学 精密工程, 2018,26(6):1415-1429.
Xiao-lei DENG, Huan LIN, Jian-chen WANG, et al. Review on thermal design of machine tool spindles[J]. Optics and precision engineering, 2018, 26(6): 1415-1429.
邓小雷, 林欢, 王建臣, 等. 机床主轴热设计研究综述[J]. 光学 精密工程, 2018,26(6):1415-1429. DOI: 10.3788/OPE.20182606.1415.
Xiao-lei DENG, Huan LIN, Jian-chen WANG, et al. Review on thermal design of machine tool spindles[J]. Optics and precision engineering, 2018, 26(6): 1415-1429. DOI: 10.3788/OPE.20182606.1415.
机床的热态性能已成为影响高速机床工作性能的最重要的因素之一。主轴是机床的关键功能部件,其热态特性在很大程度上决定了机床的切削速度和加工精度,是影响机床精度提升的最重要因素。因此,在主轴的设计阶段减少机床热误差的影响,对于提高机床的热态特性十分重要。在过去的近一个世纪时间中,国内外众多学者针对主轴热设计方法开展了研究探索,基于热设计的过程可以分成三部分内容:热态特性分析方法,热设计与优化方法和热态特性试验方法。先通过主轴热态特性(如温度场分布、热变形、热平衡时间等)建模与分析获取必要的参数,然后以此为基础开展主轴结构设计优化、材料设计优化和冷却系统设计等热设计措施,获得较佳的主轴热态特性,最后通过热态特性试验来校验分析和设计优化的结果,整个过程循环直至达到满意结果为止。本文以此为脉络展开,分别探讨了三部分内容的国内外典型研究现状、主要研究内容和所存在的优缺点,并对未来的研究趋势进行了展望。
The thermal characteristics of machine tools have emerged as one of the most important factors for the performance of high-speed machine tools. The spindle is the key component of machine tools. Thus
the thermal characteristics of the spindle determine the maximum cutting speed and processing accuracy that machine tools can achieve. Controlling the effects of thermal error of machine tools during the spindle design stage is of great importance for improving its thermal characteristics. During the past century
several researchers have focused on studying spindle thermal design methods. There are essentially three parts
namely thermal characteristics analysis
thermal design and optimization
and thermal characteristics tests. First
the necessary parameter is obtained from the modeling and analysis of thermal characteristics such as temperature field distribution
thermal deformation
and thermal balance time. Second
thermal design measures such as spindle structure optimization
material design optimization
and cooling system design are employed to obtain superior spindle thermal characteristics. Finally
the analysis and design optimization results are validated via thermal characteristics tests. The whole process is repeated until satisfactory results are obtained. The status of research in this area is discussed from these three aspects. The advantages and disadvantages are summarized
and future research prospects are discussed in the conclusion.
MAYR J, JEDRZEJEWSKI J, UHLMANN E, et al.. Thermal issues in machine tools[J]. CIRP Annals-Manufacturing Technology, 2012, 61(2):771-791.
BRYAN J. International status of thermal error research[J]. CIRP Annals, 1990, 39(2):645-656.
WECK M, MCKEOWN P, BONSE R, et al..Reduction and compensation of thermal errors in machine tools[J].Annals of CIRP, 1995, 44(2):589-597.
ABELE E, ALTINTAS Y, BRECHER C. Machine tool spindle units[J].CIRP Annals, 2010, 59(2):781-802.
邓小雷.数控机床主轴系统热态特性分析技术[M].杭州:浙江大学出版社, 2017.
DENG X L. Analysis Techniques of Thermal Characteristics for CNC Machine Tool Spindle System[M].Hangzhou:Zhejiang University Press, 2017. (in Chinese)
BOSSMANNS B, TU J F. A thermal model for high speed motorized spindles[J]. International Journal of Machine Tools & Manufacture, 1999, 39(9):1345-1366.
SU H, LU L, LIANG Y, et al.. Thermal analysis of the hydrostatic spindle system by the finite volume element method[J]. International Journal of Advanced Manufacturing Technology, 2014, 71(9):1949-1959.
刘昌华, 骆光进, 何为, 等.基于热网络的某主轴系统稳态热分析[J].中国机械工程, 2010, 21(6):631-635.
LIU CH H, LUO G J, HE W, et al.. Steady state analysis of a spindle system based on thermal network[J]. Chinese Journal of Mechanical Engineering, 2010, 21(6):631-635. (in Chinese)
ZIVKOVIC A, ZELJKOVIC M, TABAKOVIC S, et al.. Mathematical modeling and experimental testing of high-speed spindle behavior[J]. International Journal of Advanced Manufacturing Technology, 2015, 77(5-8):1071-1086.
UHLMANN E, HU J. Thermal modelling of a high speed motor spindle[J]. Procedia CIRP, 2012(1):313-318.
ZHAO H, YANG J, SHEN J. Simulation of thermal behavior of a CNC machine tool spindle[J]. International Journal of Machine Tools & Manufacture, 2007, 47(6):1003-1010.
HOLKUP T, CAO H, KOLAR P, et al.. Thermo-mechanical model of spindles[J]. CIRP Annals-Manufacturing Technology, 2010, 59(1):365-368.
KOLAR P, HOLKUP T. Prediction of machine tool spindle's dynamics based on a thermo-mechanical model[J]. Mm Science Journal, 2010(1):166-171.
LIN C W, TU J F, KAMMAN J. An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation[J]. International Journal of Machine Tools & Manufacture, 2003, 43(10):1035-1050.
LI H, SHIN Y C. Integrated dynamic thermo-mechanical modeling of high speed spindles, part 1:model development[J]. Journal of Manufacturing Science and Engineering, 2004, 126:148-158.
LI H, SHIN Y C. Integrated dynamic thermo-mechanical modeling of high speed spindles, part 2:solution procedure and validations[J]. Journal of Manufacturing Science and Engineering, 2004, 126(1):159-168.
陈小安, 刘俊峰, 合烨, 等.高速电主轴热态性能及其影响[J].机械工程学报, 2013, 49(11):135-142.
CHEN X A, LIU J F, HE Y, et al.. Thermal properties of high speed motorized spindle and their effects[J]. Journal of Mechanical Engineering, 2013, 49(11):135-142. (in Chinese)
CHIEN CH H, JANG J Y.3-D numerical and experimental analysis of a built-in motorized high-speed spindle with helical water cooling channel[J]. Applied Thermal Engineering, 2008, 28(17):2327-2336.
MEKID S. Introduction to Precision Machine Design and Error Assessment[M]. U. S. A: CRC Press Taylor & Francis Group, 2015: 75-127.
JEDRZEJEWSKI J, KOWAL Z, KWASNY W, et al.. Hybrid model of high speed machining centre headstock[J]. CIRP Annals-Manufacturing Technology, 2004, 53(1):285-288.
JEDRZEJEWSKI J, MODRZYCKI W. A new approach to modeling thermal behavior of a machine tool under service conditions[J]. CIRP Annals-Manufacturing Technology, 1992, 41(1):455-458.
JEDRZEJEWSKI J, KWASNY W. Modeling of angular contact ball bearings and axial displacements for high-speed spindles[J]. CIRP Annals-Manufacturing Technology, 2010, 59(1):377-382.
项四通, 杨建国, 张毅.基于机理分析和热特性基本单元试验的机床主轴热误差建模[J].机械工程学报, 2014, 11(50):144-152.
XIANG S T, YANG J G, ZHANG Y. Modeling method for spindle thermal error based on mechanism analysis and thermal basic characteristics tests[J]. Journal of Mechanical Engineering, 2014, 11(50):144-152. (in Chinese)
杨建国, 范开国.数控机床主轴热变形伪滞后研究及主轴热漂移在机实时补偿[J].机械工程学报, 2013, 23(49):129-135.
YANG J G, FAN K G. Research on the thermal deformation pseudo-lag and real-time compensation for CNC machine tool spindle[J]. Journal of Mechanical Engineering, 2013, 23(49):129-135. (in Chinese)
苗恩铭, 刘义, 董云飞, 等.数控机床热误差时间序列模型预测稳健性的提升[J].光学 精密工程, 2016, 24(10):2480-2489.
MIAO E M, LIU Y, DONG Y F, et al.. Improvement of forecasting robustness of time series m odel for thermal error on CNC machine tool[J]. Opt. Precision Eng., 2016, 24(10):2480-2489. (in Chinese)
MA CH, ZHAO L, MEI X, et al.. Experimental and simulation study on the thermal characteristics of the high-speed spindle system[J]. Journal of Mechanical Engineering Science, 2016, 231(6):1072-1093.
MA CH, MEI X, YANG J, et al.. Thermal characteristics analysis and experimental study on the high-speed spindle system[J]. International Journal of Advanced Manufacturing Technology, 2015, 79(1):469-489.
MA CH, YANG J, ZHAO L, et al.. Simulation and experimental study on the thermally induced deformations of high-speed spindle system[J]. Applied Thermal Engineering, 2015, 86:251-268.
马驰, 杨军, 赵亮, 等.高速主轴系统热特性分析与实验[J].浙江大学学报(工学版), 2015, 49(11):2093-2102.
MA CH, YANG J, ZHAO L, et al.. Thermal characteristics analysis and experimental study on high-speed spindle system[J]. Journal of Zhejiang University (Engineering science), 2015, 49(11):2093-2102. (in Chinese)
LIU Z, PAN M, ZHANG A, et al.. Thermal characteristic analysis of high-speed motorized spindle system based on thermal contact resistance and thermal-conduction resistance[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(9):1913-1926.
王书亭, 陈凤姣, 刘涛, 等.高速电主轴力-热耦合特性建模[J].华中科技大学学报(自然科学版), 2015, 43(10):1-5.
WANG SH T, CHEN F J, LIU T, et al.. Dynamic thermo-mechanical modeling of high speed spindle with joints characteristics considered[J]. Huazhong University of Science & Technology (Natural Science Edition), 2015, 43(10):1-5. (in Chinese)
WU L, TAN Q. Thermal Characteristic Analysis and Experimental Study of a Spindle-Bearing System[J]. Entropy, 2016, 18(7):271.
XU M, JIANG SH Y, CAI Y.An improved thermal model for machine tool bearings[J]. International Journal of Machine Tools and Manufacture, 2007, 47(1):53-62.
BRECHER C, SHNEOR Y, NEUS S, et al.. Thermal behavior of externally driven spindle:experimental study and modelling[J]. Engineering, 2015, 7(2):73-92.
LI H, YING X. A design method of temperature measurement points for thermal error of machine spindle[J]. China Mechanical Engineering, 2010, 21(7):804-808.
GUO H, LIU H J, ZHANG SH L, et al.. Performance analysis and experiment research on oil film temperature of hybrid bearing[J]. Lubrication Engineering, 2015, 40(5):1-4.
高建民, 史晓军, 许艾明, 等.高速高精度机床热分析与热设计技术[J].中国工程科学, 2013, 15(1):28-33.
GAO J M, SHI X J, XU A M, et al.. Thermal characteristic analysis and thermal design technology for high speed high precision machine tools[J]. Engineering Science, 2013, 15(1):28-33. (in Chinese)
郭应时, 袁伟, 付锐.实验法求解汽车鼓式制动器对流换热系数[J].长安大学学报(自然科学版), 2006, 26(4):92-94.
GUO Y S, YUAN W, FU R. Solution for heat convection coefficient of automotive drum brake with experiments[J]. Journal of Chang'an University (Natural Science Edition), 2006, 26(4):92-94. (in Chinese)
TAN F, YIN Q, DONG G H, et al.. An optimal convective heat transfer coefficient calculation method in thermal analysis of spindle system[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(5):2549-2560.
王书亭, 刘俊龙, 刘涛, 等.高速主轴有限元模型热学参数自适应辨识方法[J].中国机械工程, 2015, (13):1772-1782.
WANG SH T, LIU J L, LIU T, et al.. Adaptive parameter identification method for thermal finite element model of high-speed spindle[J]. China Mechanical Engineering, 2015, (13):1772-1782. (in Chinese)
邓小雷, 傅建中, 夏晨晖, 等.数控机床主轴系统热模型参数多目标修正方法研究[J].机械工程学报, 2014, 50(15):119-126.
DENG X L, FU J ZH, XIA CH H, et al.. Multi-objective correction method for thermal model parameters of CNC machine tool spindle system[J]. Journal of Mechanical Engineering, 2014, 50(15):119-126. (in Chinese)
片锦香, 刘美佳, 张丽秀, 等.基于蜂群算法的机床主轴对流换热系数优化[J].仪器仪表学报, 2015, 36(12):2706-2713.
PIAN J X, LIU M J, ZHANG L X, et al.. Optimization of convective heat transfer coefficients of machine tool spindle based on bee colony algorithm[J]. Chinese Journal of Scientific Instrument, 2015, 36(12):2706-2713. (in Chinese)
WU J. Method for Improving FEA Accuracy for CNC spindle system thermal characteristics[J]. Tool Engineering, 2010, 44(3):31-33.
HUANG J H, THAN V T, NGO T T, et al.. An inverse method for estimating heat sources in a high speed spindle[J]. Applied Thermal Engineering, 2016, 105:65-76.
张延蕾, 佟维.对流换热系数的反求方法[J].大连交通大学学报, 2005, 26(4):25-28.
ZHANG Y L, TONG W. A method of inverse evaluation for convection heat transfer coefficient[J]. Journal of Dalian railway institution, 2005, 26(4):25-28. (in Chinese)
MORI M, MIZUGUCHI H, FUJISHIMA M, et al. Design optimization and development of CNC lathe headstock to minimize thermal deformation[M]. CIRP Annals-Manufacturing Technology, 2009, 58(1): 331-334.
KIMMAN M H, LANGEN H H, MUNNING SCHMIDT R H. A miniature milling spindle with active magnetic bearings[J]. Mechatronics, 2010, 20(2):224-235.
MITSUISHI M, WARISAWA S, et al.. Development of an intelligent high-speed machining center[J].CIRP Annals, 2001, 50(1):275-280.
UWE H. Optimization Design for CNC machine spindle system heat-dissipating structure[C]. Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation, IEEE, 2009: 1406-1410.
BAE G T, KIM G N, CHOI B Y, et al.. Shape optimization of grinding spindle using response surface analysis[J]. Journal of Ocean Engineering and Techonology, 2015, 29(1):56-61.
HONG H B, YIN Y H. Ontology-based human-machine integrated design method for ultra-precision grinding machine spindle[J]. Journal of Industrial Information Integration, 2016, 2:1-10.
LIANG Y, CHEN W, SUN Y, et al.. An expert system for hydro/aero-static spindle design used in ultra precision machine tool[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(2):107-113.
PAVLICEK F, BEER Y, WEIKERT S, et al.. Design of a measurement setup and first experiments on the influence of CO2-cooling on the thermal displacements on a machine tool[J]. Procedia CIRP, 2016, 46:23-26.
XIA C, FU J, LAI J, et al.. Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling[J]. Applied Thermal Engineering, 2015, 90:1032-1042.
[EB/OL] http://www.mikron.com/mikron/internet.nsf/id/systems.cn http://www.mikron.com/mikron/internet.nsf/id/systems.cn .
[EB/OL] http://www.okuma.co.jp/chinese/onlyone/thermo/index2.html http://www.okuma.co.jp/chinese/onlyone/thermo/index2.html .
[EB/OL] http://www.mikron.com/mikron/internet.nsf/id/systems_en http://www.mikron.com/mikron/internet.nsf/id/systems_en .
OHISHI S, MATSUZATI Y. Experimental investigation of air spindle unit thermal characteristics[J]. Precision Engineering Journal of the International Societies for Precision Engineering and Nanotechnology, 2002, 26(1):49-57.
JIRI V. Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method[J]. Precision Engineering. 2012, 36(1):121-127.
MIAN N S, FLETCHER S, LONG S A P, et al.. Efficient estimation by FEA of machine tool distortion due to environmental temperature perturbations[J]. Precision Engineering. 2013, 37(2):372-379.
CHANG C F, CHEN J J. Thermal growth control techniques for motorized spindles[J]. Mechatronics, 2009, 19(8):1313-1320.
ABDULSHAHED A M, LONGSTAFF A P, FLETCHER S, et al.. Thermal error modeling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera[J]. Applied Mathematical Modeling, 2015, 39(7):1837-1852.
于长伟. 数控车床热误差补偿建模研究[D]. 合肥工业大学, 2011.
YU CH W. Research about thermal error compensation model of NC Lathe[D]. Hefei: Hefei University of Technology, 2011. (in Chinese)
阳红, 方辉, 刘立新.基于热误差神经网络预测模型的机床重点热刚度辨识方法研究[J].机械工程学报, 2011, 47(11):117-124.
YANG H, FANG H, LIU L X. Method of key thermal stiffness identification on a machine tool based on the thermal errors neural network prediction model[J]. Journal of Mechanical Engineering, 2011, 47(11):117-124. (in Chinese)
刘勇, 李昆, 王帼媛.激光在机测量系统的实现[J].光学 精密工程, 2017, 25(10):2668-2675.
LIU Y, LI K, WANG G Y. Implementation of laser on-machine measuring system[J]. Opt. Precision Eng., 2017, 25(10):2668-2675. (in Chinese)
袁江, 吕晶, 邱自学, 等.基于温度传感标签的主轴热误差无线监测方法及试验[J].机械工程学报, 2015, 51(14):5-22.
YUAN J, LÜ J, QIU Z X, et al.. Wireless monitoring method and experiment of spindle thermal error based on temperature sensor tag[J]. Journal of Mechanical Engineering, 2015, 51(14):15-22. (in Chinese)
The International Organization for Standardization. ISO 230-3-2006 test code for machine tools. Part 3: Determination of thermal effects[S]. Geneva: International Standard Organization, 2006.
American National Standards Committee. ASME B5. 54-2005 methods for performance evaluation of computer numerically controlled machining centers[S]. New York: The American Society of Mechanical Engineers, 2005.
倪军.数控机床误差补偿研究的回顾及展望[J].中国机械工程, 1997, 8(1):29-33.
NI J. Review and forecast for thermal errors compensation of machine tools[J]. China Mechanical Engineering, 1997, 8(1):29-33. (in Chinese)
MIAO EN M, NIU P CH, et al.. Selecting Temperature-sensitive Points and Modeling Thermal Errors of Machine Tools[J]. Journal of the Chinese Society of Mechanical Engineers, 2011, 32(6):559-565.
LO C H, YUAN J, NI J. An application of real-time error compensation on a turning center[J]. International Journal of Machine Tools & Manufacture, 1995, 35(12):1669-1682.
FRASER. S, ATTIA M H, OSMAN M O. Modeling, identification and control of thermal deformation of machine tool structure, Part Ⅰ: concept of generalized modeling[J]. ASME Journal of Manufacturing Science and Engineering, 1998, 120(3): 623.
FRASER. S, ATTIA M H, OSMAN M O. Modeling, identification and control of thermal deformation of machine tool structure, Part 2: generalized transfer function[J]. ASME Journal of Manufacturing Science and Engineering, 1998, 120(3): 632-639.
FRASER. S, ATTIA M H, OSMAN M O. Modeling, identification and control of thermal deformation of machine tool structure, Part 3: real-time estimation of heat sources[J]. ASME Journal of Manufacturing Science and Engineering, 1999, 121(3): 501.
VELDHUIS S C, EELBESTAWI M A. A strategy for the compensation of errors in five-axis machining[J]. CIRP Annals-Manufacturing Technology. 1995, 44(1):373-377.
陈子辰. 热敏感度和热偶合度研究[C]. 全国机床热误差控制和补偿研究会议论文集. 杭州, 浙江大学出版社, 1992, 11: 201-210.
CHEN Z CH. Thermal sensitivity and thermal coupling study[C]. National Machine Tool Thermal Error Control and Compensation Research Conference Proceedings. Hangzhou, Zhejiang university press, 1992, 11: 201-210. (in Chinese)
邓小雷, 傅建中, 沈洪垚, 等.精密数控机床多主轴系统热平衡试验[J].浙江大学学报(工学版), 2014, 48(9):1646-1653.
DENG X L, FU J ZH, SHEN H Y, et al.. Thermal equilibrium test for spindle system of precision CNC machine tool[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(9):1646-1653. (in Chinese)
孙磊. 数控机床主轴热误差动态检测与分离研究[D]. 浙江大学, 2013.
SUN L. Research on Dynamic Measurement and Separation for Thermal Errors of CNC Machine tools Spindle[D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
CAO Y J, FU J ZH. Study on optimal Layout temperature measurement for thermal errors of spindle in machine tools[J]. Modular Machine Tool&Automatic Manufacturing Technique, 2007(1):61-64.
霍文健. 基于马尔科夫链的电主轴无线传感监测旋转信道建模研究[D]. 浙江大学, 2012.
HUO W J. Research on Modeling of Rotating Channel of Motorized Spindle Wireless Sensor Monitoring based on Markov Chain[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
杨建国, 范开国.数控机床主轴热变形伪滞后研究及主轴热漂移在机实时补偿[J].机械工程学报, 2013, 49(23):129-135.
YANG J G, FAN K G. Research on the thermal deformation pseudo-lag and real-time compensation for CNC machine tool spindle[J]. Journal of Mechanical Engineering, 2013, 49(23):129-135. (in Chinese)
LI Y X, YANG J G, LI Y Y. Optimization of measuring points for machine tool thermal error based on grey theory[J]. International Journal of Advanced Manufacturing Technology, 2008, 35:745-750.
WANG H, HUANG Q, YANG H. In-line statistical monitoring of machine tool thermal error through latent variable modeling[J]. Journal of Manufacturing System, 2006, 25(4):279-292.
苗恩铭, 高增汉, 党连春, 等.数控机床热误差特性分析[J].中国机械工程, 2015, 26(8):1078-1084.
MIAO E M, GAO Z H, DANG L C, et al.. Thermal error characteristics analysis of CNC machine tools[J]. Chinese Journal of Mechanical Engineering, 2015, 26(8):1078-1084. (in Chinese)
苗恩铭, 龚亚运, 成天驹, 等.支持向量回归机在数控加工中心热误差建模中的应用[J].光学 精密工程, 2013, 21(4):980-986.
MIAO E M, GONG Y Y, CHENG T J, et al.. Application of support vector regression to thermal error modeling of machine tools[J]. Opt. Precision Eng., 2013, 21(4):980-986. (in Chinese)
郭辰光, 韩雪, 李源, 等.精密数控车床主轴热误差建模[J].光学 精密工程, 2016, 24(7):1731-1742.
GUO CH G, HAN X, LI Y, et al.. Thermal error modeling for spindle system of precision CNC lathe[J]. Opt. Precision Eng., 2016, 24(7):1731-1742. (in Chinese)
丛明, 李泳耀, 孙宗余, 等.机床温度测点优化方法研究及试验验证[J].大连理工大学学报, 2015, (6):582-588.
CONG M, LI Y Y, SUN Z Y, et al.. An optimization method of temperature measuring points for machine tools and experimental verification[J]. Journal of Dalian University of Technology, 2015, (6):582-588. (in Chinese)
0
浏览量
702
下载量
15
CSCD
关联资源
相关文章
相关作者
相关机构