浏览全部资源
扫码关注微信
北京工业大学 信息学部, 北京 100124
[ "贾松敏(1964-), 女, 北京人, 博士, 教授, 2002年于日本国立电气通信大学获得博士学位, 主要从事智能服务机器人, 计算机视觉等方面的研究。E-mail:jsm@bjut.edu.cn" ]
[ "李柏杨(1992-), 男, 内蒙古包头人, 硕士研究生, 2015年于北京工业大学获得学士学位, 主要从事机器人实时定位与导航, 计算机视觉等方面的研究。E-mail:liboyang92@163.com" ]
收稿日期:2017-10-19,
录用日期:2017-12-10,
纸质出版日期:2018-06-25
移动端阅览
贾松敏, 李柏杨, 张国梁. 采用混合回环检测与闭环优化的TSDF地图创建[J]. 光学 精密工程, 2018,26(6):1497-1506.
Song-min JIA, Bo-yang LI, Guo-liang ZHANG. TSDF map building based on hybrid loopback detection and closed-loop optimization[J]. Optics and precision engineering, 2018, 26(6): 1497-1506.
贾松敏, 李柏杨, 张国梁. 采用混合回环检测与闭环优化的TSDF地图创建[J]. 光学 精密工程, 2018,26(6):1497-1506. DOI: 10.3788/OPE.20182606.1497.
Song-min JIA, Bo-yang LI, Guo-liang ZHANG. TSDF map building based on hybrid loopback detection and closed-loop optimization[J]. Optics and precision engineering, 2018, 26(6): 1497-1506. DOI: 10.3788/OPE.20182606.1497.
由于原始TSDF(Truncated Signed Distance Function,TSDF)模型仅考虑相邻时间上的关联,误差将不可避免的累积到下一时刻,无法构建全局一致的地图。为了实时精确的建立大场景稠密3D地图,对TSDF模型进行了改进。首先,构筑相机位姿模型和加权融合3D点截断信息的TSDF模型,用于准确表示创建物体的表面。其次,提出一种改进的回环检测方法,并将其与随机蕨类彩色图像编码化相结合,进而优化TSDF模型,即混合优化位姿模型。最后,使用g2o图优化库解算约束函数,建立数据集间的优化边。实验结果表明:混合优化位姿模型能识别曾到达区域,特别在较大场景下使用可以得到更加准确的相机轨迹和地图。采用TUM数据集中的fr1/xyz、fr1/room、fr1/desk对所提算法进行检验,结果表明该方法能够使相机轨迹的均方根误差分别下降0.59 cm,3.14 cm,0.94 cm。在室内环境和公开数据集上的实验结果证明了所提算法的有效性和准确性。
Because the original Truncated Signed Distance Function (TSDF) model only considers the correlation of adjacent time
the error will inevitably accumulate to the next time
and it is impossible to build a globally consistent map In order to establish the dense 3D map of large scenes in real time and accurately
the TSDF model was improved in this paper. First
a camera pose model and weighted fusion 3D point truncation information model were established to represent the surface of the created object. Secondly
an improved loop detection method was proposed
which was combined with the random fern color image coding
and then optimized the TSDF model
that is
the mixed optimization pose model. Finally
the g2o diagram was used to solve the constraint function and established the optimized edges between the datasets. The experimental results showed that the loopback detection method proposed in this paper could obtain more accurate camera trajectory and map in a larger scene. The proposed algorithm was verified by fr1/xyz
fr1/room and fr1/desk in the TUM dataset. The results show that the root mean square error of the camera trajectory decreased by 0.59 cm
3.14 cm
0.94 cm
respectively. The validity and accuracy of the proposed algorithm are verified in the laboratory environment and the open data set.
FUENTES-PACHECO J, RUIZ-ASCENCIO J, RENDÓN-MANCHA J M. Visual simultaneous localization and mapping:a survey[J]. Artificial Intelligence Review, 2015, 43(1):55-81.
曹天扬, 蔡浩原, 方东明, 等.结合图像内容匹配的机器人视觉导航定位与全局地图构建系统[J].光学 精密工程, 2017, 25(8):2221-2232.
CAO T Y, CAI H Y, FANG D M, et al.. Robot vision system for keyframe global map establishment and robot localization based on graphic content matching[J]. Opt. Precision Eng., 2017, 25(8):2221-2232. (in Chinese)
MUR-ARTAL R, MONTIEL J M M, TARDÓS J D. ORB-SLAM:A Versatile and Accurate Monocular SLAM System[J]. IEEE Transactions on Robotics, 2017, 31(5):1147-1163.
GAO X, ZHANG T. Unsupervised learning to detect loops using deep neural networks for visual SLAM system[J]. Autonomous Robots, 2017, 41(1):1-18.
KERL C, STURM J, CREMERS D. Robust odometry estimation for RGB-D cameras[C]// IEEE International Conference on Robotics and Automation. IEEE , 2013: 3748-3754.
ENDRES F, HESS J, ENGELHARD N, et al . . An evaluation of the RGB-D SLAM system[C]// IEEE International Conference on Robotics and Automation. IEEE , 2012: 1691-1696.
ENDRES F, HESS J, STURM J, et al.. 3-D Mapping With an RGB-D Camera[J]. IEEE Transactions on Robotics, 2017, 30(1):177-187.
KÜMMERLE R, GRISETTI G, STRASDAT H, et al . . G2o: A general framework for graph optimization[C]// IEEE International Conference on Robotics and Automation. IEEE , 2011: 3607-3613. http://ais.informatik.uni-freiburg.de/publications/papers/kuemmerle11icra.pdf
杜航原, 郝燕玲, 赵玉新, 等.用概率假设密度滤波实现同步定位与地图创建[J].光学 精密工程, 2011, 19(12):3064-3073.
DU H Y, HAO Y L, ZHAO Y X, et al.. Implementation of SLAM by probability hypothesis density filter[J]. Opt. Precision Eng., 2011, 19(12):3064-3073. (in Chinese)
NEWCOMBE R A, IZADI S, HILLIGES O, et al . . KinectFusion: Real-time dense surface mapping and tracking[C]// IEEE International Symposium on Mixed and Augmented Reality. IEEE , 2012: 127-136. https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ismar2011.pdf
ANDUJAR D, DORADO J, RIBEIRO A. An Approach to the Use of Depth Cameras for Weed Volume Estimation[J]. Sensors, 2016, 16(7).
TATENO K, TOMBARI F, LAINA I, et al . . CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction[C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition ( CVPR ), Hawaii , USA , June , 2017.
YAN Z, YE M, REN L. Dense Visual SLAM with Probabilistic Surfel Map.[J]. IEEE Transactions on Visualization & Computer Graphics, 2017, PP(99):1-1.
刘宗明, 张宇, 卢山, 等.非合作旋转目标闭环检测与位姿优化[J].光学 精密工程, 2017, 25(4):1036-1043.
LIU Z M, ZHANG Y, LU SH, et al.. Closed-loop detection and pose optimization of non-cooperation rotating targets[J]. Opt. Precision Eng., 2017, 25(4):1036-1043. (in Chinese)
GLOCKER B, SHOTTON J, CRIMINISI A, et al.. Real-Time RGB-D Camera Relocalization via Randomized Ferns for Keyframe Encoding[J]. IEEE Trans Vis Comput Graph, 2015, 21(5):571-583.
张百强, 储海荣, 孙婷婷, 等.应用RB无迹卡尔曼滤波组合导航提高GPS重获信号后的导航精度[J].光学 精密工程, 2016, 24(4):835-843.
ZHANG B Q, CHU H R, SUN T T, et al.. Precision improvement methodology for INS/GPS after GPS outage using RB-UKF[J]. Opt. Precision Eng., 2016, 24(4):835-843. (in Chinese)
祝继华, 郑南宁, 袁泽剑, 等.基于ICP算法和粒子滤波的未知环境地图创建[J].自动化学报, 2009, 35(8):1107-1113.
ZHU J H, ZHENG N N, YUAN Z J, et al.. A SLAM Approach by Combining ICP Algorithm and Particle Filter[J]. Acta Automatica Sinica, 2009, 35(8):1107-1113. (in Chinese)
STURM J, ENGELHARD N, ENDRES F, et al . . A benchmark for the evaluation of RGB-D SLAM systems[C]// Ieee/rsj International Conference on Intelligent Robots and Systems. IEEE , 2012: 573-580.
0
浏览量
662
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构