浏览全部资源
扫码关注微信
国防科技大学 电子对抗学院 脉冲功率激光技术国家重点实验室, 安徽 合肥 200037
[ "杨星(1983-), 男, 四川都江堰人, 博士, 助理研究员, 2006年、2009年、2012年于解放军电子工程学院分别获得学士、硕士、博士学位, 主要从事光电成像、机器视觉及模式识别方面的研究。E-mail:yangxing.1983@163.com" ]
收稿日期:2017-12-29,
录用日期:2018-1-24,
纸质出版日期:2018-07-25
移动端阅览
杨星. Tetrolet域uHMT结构先验与Turbo均衡的压缩成像[J]. 光学 精密工程, 2018,26(7):1766-1773.
Xing YANG. Compressive imaging based on Tetrolet-domain uHMT structured sparse prior and Turbo equalization[J]. Optics and precision engineering, 2018, 26(7): 1766-1773.
杨星. Tetrolet域uHMT结构先验与Turbo均衡的压缩成像[J]. 光学 精密工程, 2018,26(7):1766-1773. DOI: 10.3788/OPE.20182607.1766.
Xing YANG. Compressive imaging based on Tetrolet-domain uHMT structured sparse prior and Turbo equalization[J]. Optics and precision engineering, 2018, 26(7): 1766-1773. DOI: 10.3788/OPE.20182607.1766.
基于Tetrolet变换系数的尺度间传递特性与按指数衰减特性,本文构建了一种Tetrolet域通用隐马尔科夫树结构稀疏先验模型,把Tetrolet变换系数的统计分布表示成二值高斯混合形式作为先验信息,并采用因子图方法估计后验状态概率。为了解决在有环路的因子图中消息不能稳定收敛的问题,利用Turbo均衡方法把压缩采样和结构先验部分分割成两个子图,分别进行状态估计并相互交换消息。最后依据最小均方误差准则估计得到重构图像,对128×128的测试图像重构的归一化均方误差可达-20.97 dB,运行时间为45.24 s。实验结果表明该算法在重构质量和运行速度上优于小波域隐马尔科夫树模型的各类算法。
Based on the persistence and exponential decay across scales of Tetrolet coefficients
the Tetrolet-domain universal hidden Markov tree structured sparse prior model was established for compressive imaging. In this model
the statistic distribution of Tetrolet coefficients was presented as the prior with the Gaussian-mixture form
and then
the posterior probability density function (PDF) was estimated by using the factor graph method. In order to solve the problem that the messages passing through the loop factor graph cannot reach stable convergence
the Turbo equalization method was exploited to decouple the factor graph into two parts for estimating the states of compressive sampling and the structured sparse model. Then
the exchange of messages was performed mutually in the two sub-graphs until reaching convergence. Finally
the image was estimated based on the minimum mean-squared error criterion. The normalized mean-squared error of reconstructing the testing image with size 128×128 was -20.97 dB
and the run-time was 45.24 s. Experimental results demonstrate that the proposed algorithm outperforms the algorithms based on the wavelet-domain hidden Markov tree model in terms of reconstruction quality and speed.
ROMBERG J. Imaging via compressive sampling[J].IEEE Signal Process. Mag., 2008, 25(2):14-20.
孙洪, 张智林, 余磊.从稀疏到结构化稀疏:贝叶斯方法[J].信号处理, 2012, 28(6):759-773.
SUN H, ZHANG ZH L, YU L. From sparsity to structured sparsity:Bayesian perspective[J]. Signal processing, 2012, 28(6):759-773. (in Chinese)
吴建宁, 徐海东, 王珏.基于过完备字典稀疏表示的多通道脑电信号压缩感知联合重构[J].电子与信息学报, 2016, 38(7):1666-1673.
WU J N, XU H D, WANG J. A new joint reconstruction algorithm of compressed sensing for multichannel EEG signals based on over-complete dictionary approach[J]. Journal of Electronics & Information Technology, 2016, 38(7):1666-1673. (in Chinese)
CROUSE M S, NOWAK R D, BARANIUK R G. Wavelet-based statistical signal processing using hidden Markov models[J].IEEE Transactions on Signal Processing, 1998, 46(4):886-902.
BARANIUK R G, CEVHER V, DUARTE M F, et al.. Model-based compressive sensing[J]. IEEE Trans. Inf. Theory, 2010, 56(4):1982-2001.
DUARTE M F, WAKIN M B, BARANIUK R G. Wavelet-domain compressive signal reconstruction using a hidden Markov tree model[C]. IEEE Int. Conf. Acoust. Speech & Signal Process , 2008: 5137-5140.
HE L, CARIN L. Exploiting structure in wavelet-based Bayesian compressive sensing[J]. IEEE Trans. Signal Processing, 2009, 57(9):3488-3497.
TORKAMANI R, SADEGHZADEH R A. Bayesian compressive sensing using wavelet based Markov random fields[J]. Signal Processing-Image and Communication, 2017, 58:65-72.
HE L, CHEN H, CARIN L. Tree-structured compressive sensing with variational Bayesian analysis[J]. IEEE Signal Processing letter, 2010, 17(3):233-236.
BARON D, SARVOTHAM S, BARANIUK R G. Bayesian compressive sensing via belief propagation[J]. IEEE Transactions on Signal Processing, 2010, 58(1):269-280.
SOM S, SCHNITER P. Compressive imaging using approximate message passing and a Markov-tree prior[J]IEEE Transactions on Signal Processing, 2012, 60(7):3439-3448.
KROMMWEH J. Tetrolet transform:a new adaptive Haar wavelet algorithm for sparse image representation[J].Journal of Visual Communication and Image Representation, 2010, 21(4):364-374.
HEGDE C, INDYK P, SCHMIDT L. A fast approximation algorithm for tree-sparse recovery[C]. IEEE Int. Symp. Inf. Theory , 2014, 1842-1846.
WANG Y G, YANG L, TANG Z Y, et al.. Multitask classification and reconstruction using extended Turbo approximate message passing[J]. Signal Image and Video Processing, 2017, 11(2):219-226
TAN J, MA Y T, BARON D. Compressive imaging via approximate message passing with image denoising[J].IEEE Transactions on Signal Processing, 2015, 63(8):2085-2092.
METZLER C A, MALEKI A, BARANIUK R G. From denoising to compressed sensing[J].IEEE Transactions on Information Theory, 2016, 62(9):5117-5144.
ROMBERG J K, CHOI H, BARANIUK R G. Bayesian tree-structured image modeling using wavelet-domain hidden Markov models[J].IEEE Transaction on Image Processing, 2001, 10(7):1056-1068.
MCELIECE R J, MACKAY D J, CHENG J F. Turbo decoding as an instance of Pearl's 'belief propagation' algorithm[J].IEEE J. Sel. Areas Commun., 1998, 16(2):140-152.
MACKAY D J. Information Theory, Inference, and Learning Algorithms[M].New York:Cambridge University Press, 2003, 570-574.
KSCHISCHANG F R, FREY B J, LOELIGER H A. Factor graphs and the sum-product algorithm[J].IEEE Trans. Inf. Theory, 2001, 47:498-519.
BAYATI M, MONTANARI A. The dynamics of message passing on dense graphs with applications to compressed sensing[J].IEEE Trans. Inf. Theory, 2011, 57(2):764-785.
DONOHO D L, MALEKI A, MONTANARI A. Message passing algorithms for compressed sensing: I. Motivation and construction[C]. Inf. Theory Workshop , 2010, 1-5.
0
浏览量
235
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构