浏览全部资源
扫码关注微信
1.陆军工程大学 车辆与电气工程系, 河北 石家庄 050003
2.中国空气动力研究与发展中心 高速所, 四川 绵阳 621000
[ "李青竹(1993-), 男, 四川绵阳人, 2016年于西南交通大学获得学士学位, 主要从事磁异常探测, 磁梯度张量系统设计与误差校正等方面的研究。E-mail:laznlqz666@163.com" ]
[ "李志宁(1972-), 男, 河北石家庄人, 副教授, 1999年于军械工程学院获硕士学位, 2007年于清华大学获博士学位, 主要从事弱磁测试技术研究。E-mail:lizn03@hotmail.com" ]
收稿日期:2017-11-08,
录用日期:2017-12-11,
纸质出版日期:2018-07-25
移动端阅览
李青竹, 李志宁, 张英堂, 等. 磁梯度张量系统传感器阵列的快速旋转校准[J]. 光学 精密工程, 2018,26(7):1813-1826.
Qing-zhu LI, Zhi-ning LI, Ying-tang ZHANG, et al. Fast rotation calibration of sensor array in magnetic gradient tensor system[J]. Optics and precision engineering, 2018, 26(7): 1813-1826.
李青竹, 李志宁, 张英堂, 等. 磁梯度张量系统传感器阵列的快速旋转校准[J]. 光学 精密工程, 2018,26(7):1813-1826. DOI: 10.3788/OPE.20182607.1813.
Qing-zhu LI, Zhi-ning LI, Ying-tang ZHANG, et al. Fast rotation calibration of sensor array in magnetic gradient tensor system[J]. Optics and precision engineering, 2018, 26(7): 1813-1826. DOI: 10.3788/OPE.20182607.1813.
为有效消除磁梯度张量系统传感器阵列间非对准误差和传感器系统误差对测量精度造成的影响,提出了一种只需绕系统任意轴旋转一周便可理论上实现所有磁传感器与参考平台正交系间精确校准方法。利用两组无数学简化的非线性转换构建传感器系统误差线性校正模型,仅需同一旋转周期的10组测量数据便能得到参考平台与各传感器的理想正交输出。通过构建磁传感器三轴横倾、俯仰、方位转换的旋转矩阵,得到传感器空间任意姿态的非对准误差校正模型并对旋转角进行最小二乘估计,仅需同一旋转周期的3组测量数据便能对准张量系统。仿真和实测结果表明:在理想情况下仿真参数估计准确率接近100%,实验校正后各传感器输出具有较高重合与同轴性,张量分量RMSE(均方根误差)小于30 nT/m。能以较简单步骤和较少采样数据高效提高差分法磁梯度张量系统测量精度。
In order to eliminate the effect of the misalignment error between the sensor array and the sensor system of the magnetic gradient tensor system on the measurement accuracy
a method of theoretically precise calibration between all magnetic sensors and reference platforms
which involves rotating a circle around an arbitrary axis of the system
was proposed. The linear correction model of the sensor system error was constructed using two nonlinear transformations without any mathematical simplification
and the ideal orthogonal output of the reference platform and each sensor was obtained with only 10 sets of measurement data in the same rotation period. By constructing the rotation matrix of the tri-axis heel
pitch
and azimuth transformations of the magnetic sensor
the misalignment error correction model of the arbitrary spatial orientation of the sensors was obtained
and the rotation angle was estimated by the least-squares method. In addition
only three sets of measurement data in the same rotation period was necessary for the alignment of the tensor system. The simulation and experiment show that the accuracy of the simulation parameters estimation was close to 100% in the ideal condition. After the calibration experiment
the output of the sensor showed a high overlapping and coaxiality performance
and the RMSE (root mean square error) of the tensor components was less than 30 nT/m. It is possible to improve the measurement accuracy of the differential magnetic gradient tensor system efficiently with simpler steps and less sampling data.
张昌达.关于磁异常探测的若干问题[J].工程地球物理学报, 2007(6):549-553.
ZHANG CH D. Some problems concerning the magnetic anomaly detection(MAD)[J]. Chinese Journal of Engineering Geophysics, 2007(6):549-553. (in Chinese)
SCHMIDT P, CLARK D, LESLIE K, et al.. GETMAG SQUID magnetic tensor gradiometer for mineral and oil exploration[J]. Exploration Geophysics, 2004, 35(4):297-305.
张昌达.航空磁力梯度张量测量-航空磁测技术的最新进展[J].工程地球物理学报, 2006(5):354-361.
ZHANGC D. Airborne tensor magnetic gradiometry-the latest progess of airborne magnetometric technology[J]. Chinese Journal of Engineering Geophysics, 2006(5):354-361. (in Chinese)
SCHMIDT P, CLARK D. The magnetic gradient tensor:Its properties and uses in source characterization[J]. The Leading Edge, 2006, 25(1):75-78.
BERGGREN S A E, FAGALY R L. Tiered superconducting quantum interference device (SQUID) array: U. S. Patent Application 15/230, 656[P]. 2016.
YIN G, ZHANG Y T, FAN H B, et al.. Detection, localization and classification of multiple dipole-like magnetic sources using magnetic gradient tensor data[J]. Journal of Applied Geophysics, 2016, 128:131-139.
张光, 张英堂, 李志宁, 等.载体平动条件下的磁梯度张量定位方法[J].华中科技大学学报(自然科学版), 2013, 41(1):21-24.
ZHANG G, ZHANG Y T, LI ZH N, et al.. Localizing method of magnetic field gradient tensor under carriers moving parallelly[J]. Journal of Huazhong University of Science & Technology Nature Science, 2013, 41(1):21-24. (in Chinese)
庞鸿锋. 捷联式地磁矢量测量系统误差分析及校正补偿技术[D]. 长沙: 国防科学技术大学, 2015: 18-33. http://cdmd.cnki.com.cn/Article/CDMD-90002-1016922047.htm
PANG H F. Error analysis and calibration/compensation method of strap-down geomagnetic vector measurement system [D]. Changsha: National University of Defense Technology, 2015: 18-33. (in Chinese)
于振涛, 吕俊伟, 郭宁, 等.四面体磁梯度张量系统的误差补偿[J].光学 精密工程, 2014, 22(10):2683-2690.
YU ZH T, LV J W, GUO N, et al.. Error compensation of tetrahedron magnetic gradiometer[J]. Opt. Precision Eng., 2014, 22(10):2683-2690. (in Chinese)
张光, 张英堂, 尹刚, 等.基于线性误差模型的磁张量系统校正[J].吉林大学学报(工学版), 2015, 45(3):1012-1016.
ZHANG G, ZHANG Y T, YIIN G, et al.. Calibration method of magnetic tensor system based on linear error model[J]. Journal of Jilin University, 2015, 45(3):1012-1016. (in Chinese)
YIN G, ZHANG Y T, FAN H B, et al.. Integrated calibration of magnetic gradient tensor system[J]. Journal of Magnetism & Magnetic Materials, 2015, 374:289-297.
PANG H, PAN M, CHEN J, et al.. Integrated calibration and magnetic disturbance compensation of three-axis magnetometers[J]. Measurement, 2016, 93:409-413.
刘丽敏. 磁通门张量的结构设计、误差分析及水下目标探测[D]. 吉林: 吉林大学, 2012: 26-33. http://cdmd.cnki.com.cn/Article/CDMD-10183-1012371597.htm
LIU L M. Configuration design, error analysis and underwater target detection of fluxgate tensor magnetometer [D]. Jilin: Jilin University, 2012: 26-33. (in Chinese)
PANG H, CHEN D, PAN M, et al.. Improvement of magnetometer calibration using Levenberg-Marquardt algorithm[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2014, 9(3):324-328.
YIN G, ZHANG Y T, FAN H B, et al.. One-step calibration of magnetic gradient tensor system with nonlinear least square method[J]. Sensors and Actuators A:Physical, 2015, 229:77-85.
PANG H, LUO S, ZHANG Q, et al.. Calibration of a fluxgate magnetometer array and its application in magnetic object localization[J]. Measurement Science and Technology, 2013, 24(7):075102.
WU Z, WU Y, HU X, et al.. Calibration of three-axis magnetometer using stretching particle swarm optimization algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(2):281-292.
李翔, 王勇军, 李智.航姿系统矢量传感器非对准误差及其校正[J].传感技术学报, 2017, 30(2):266-271.
LI X, WANG Y J, LI ZH. Inter-triad misalignment of vector field sensors in attitude and heading reference systems and its calibration[J]. Chinese Journal of Sensors and Actuators, 2017, 30(2):266-271. (in Chinese)
BJORCK A. Numerical methods for least squares problems[M]. Philadelphia:Society for Industrial and Applied Mathematics, 1996:269-361.
CHAI T, DRAXLER R R. Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature[J]. Geoscientific Model Development, 2014, 7(3):1247-1250.
0
浏览量
869
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构