浏览全部资源
扫码关注微信
重庆大学 光电技术与系统教育部重点实验室, 重庆 400044
[ "黄鸿(1980-), 男, 湖南新宁人, 教授, 博士生导师, 2003、2005、2008年于重庆大学分别获得学士、硕士和博士学位, 主要从事流形学习、模式识别、遥感影像智能化处理等方面的研究。E-mail:hhuang@cqu.edu.cn" ]
[ "陈美利(1992-), 女, 重庆铜梁人, 硕士研究生, 2016年于南京师范大学获得学士学位, 主要从事图像处理、遥感影像分类等方面的研究。E-mail:chenmeili@cqu.edu.cn" ]
收稿日期:2017-11-03,
录用日期:2018-1-19,
纸质出版日期:2018-07-25
移动端阅览
黄鸿, 陈美利, 段宇乐, 等. 空-谱协同流形重构的高光谱影像分类[J]. 光学 精密工程, 2018,26(7):1827-1836.
Hong HUANG, Mei-li CHEN, Yu-le DUAN, et al. Hyper-spectral image classification using spatial-spectral manifold reconstruction[J]. Optics and precision engineering, 2018, 26(7): 1827-1836.
黄鸿, 陈美利, 段宇乐, 等. 空-谱协同流形重构的高光谱影像分类[J]. 光学 精密工程, 2018,26(7):1827-1836. DOI: 10.3788/OPE.20182607.1827.
Hong HUANG, Mei-li CHEN, Yu-le DUAN, et al. Hyper-spectral image classification using spatial-spectral manifold reconstruction[J]. Optics and precision engineering, 2018, 26(7): 1827-1836. DOI: 10.3788/OPE.20182607.1827.
鉴于传统高光谱影像分类大都采用监督学习方法,且仅利用了光谱信息,未考虑影像空间特征和流形结构。提出一种基于空-谱协同流形重构误差的高光谱影像分类方法,该算法基于高光谱影像中地物分布的空间一致性,利用少量标记的样本和大量的无标记空间近邻样本来进行半监督学习,并利用测试样本在每一子流形上的重构误差来表征相似性,实现鉴别分类。在Indian Pines和University of Pavia数据集上的实验结果表明,本文方法的分类精度在各种条件下要优于其他分类算法,其最高总体精度分别达到了95.67%和91.92%。该算法将高光谱遥感影像中的空间-光谱信息融入不同地物的子流形结构表征,在训练样本数量较少时仍能得到好的分类效果,有效提升了分类性能。
In recent years
several supervised learning methods have been introduced in hyperspectral image (HSI) classification. However
these methods use only spectral information without taking into account the spatial features and manifold structures of HSIs. To overcome this problem
a new classification method was proposed for HSI classification
combining spatial-spectral features and manifold reconstruction. Based on the spatial consistency of ground objects distribution in HSIs
the proposed algorithm used a small number of labeled samples and large number of unlabeled spatial neighbor samples to perform semisupervised learning
and utilized the reconstruction error of test samples in each submanifold to represent the similarities for discriminant classification. Experimental results obtained from the Indian Pines and University of Pavia data set reveal that the proposed method exhibits a higher classification accuracy compared to other classification algorithms under various training conditions
the highest overall accuracy achieved in the two cases being 95.67% and 91.92%
respectively. The proposed method integrates spatial-spectral information to represent the submanifold structure of different land objects
exhibits superior discrimination performance
especially for a small number of training samples
and effectively improves the performance of HSI classification.
黄鸿, 郑新磊.加权空-谱与KNN相结合的高光谱图像分类[J].光学 精密工程, 2016, 24(4):873-880.
HUANG H, ZHENG X L. Hyperspectral image classification with combination of weighted spatial-spectral and KNN[J]. Opt. Precision Eng., 2016, 24(4):873-880. (in Chinese)
TIEN H N, KOIKE K. Hyperspectral transformation from EO-1 ALI imagery using pseudo-hyperspectral image synthesis algorithm[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B7:661-665.
王晗, 王阿川, 苍圣.基于压缩感知的高光谱遥感影像重构方法研究[J].液晶与显示, 2017, 32(3):219-226.
WANG H, WANG A CH, CANG SH. Research on reconstruction of hyperspectral remote sensing image based on compressed sensing[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(3):219-226.(in Chinese)
WANG L, ZHANG J, LIU P, et al.. Spectral-spatial multi-feature-based deep learning for hyperspectral remote sensing image classification[J]. Soft Computing, 2017, 21(1):213-221.
LIU X, WANG L, ZHANG J, et al.. Global and local structure preservation for feature selection[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017, 25(6):1083-1095.
杜培军, 夏俊士, 薛朝辉, 等.高光谱遥感影像分类研究进展[J].遥感学报, 2016, 20(2):236-256.
DU P J, XIA J SH, XUE ZH H, et al.. Progress of hyperspectral remote sensing image classification[J]. Journal of remote sensing, 2016, 20(2):236-256. (in Chinese)
罗甫林. 面向高光谱图像的空谱核半监督图聚类算法研究[D]. 重庆: 重庆大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10611-1016907790.htm
LUO F L. Study spectral kernel semi supervised graph clustering algorithm of hyperspectral images [D]. Chongqing: Chongqing University, 2016.
ZHANG S, WU C, LIU L, et al.. Optical coherence tomography angiography of the peripapillary retina in primary angle-closure glaucoma[J]. American Journal of Ophthalmology, 2017, 182:194.
TIAN J, MORILLO C, AZARIAN M H, et al.. Motor bearing fault detection using spectral kurtosis-based feature extraction coupled with k-nearest neighbor distance analysis[J]. IEEE Transactions on Industrial Electronics, 2016, 63(3):1793-1803.
CAVALLARO G, RIEDE M, RICHERZHAGEN M, et al.. On understanding big data impacts in remotely sensed image classification using support vector machine methods[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 8(10):4634-4646.
XIA J, CHANUSSOT J, DU P, et al.. Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and markov random fields[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(5):2532-2546.
SOUZAF D M D, SARKAR S, SRIVASTAVA A, et al.. Spatially coherent interpretations of videos using pattern theory[J]. International Journal of Computer Vision, 2017, 121(1):1-21.
MOHANA, SAPIRO G, BOSCH E. Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images[J]. IEEE Geoscience & Remote Sensing Letters, 2007, 4(2):206-210.
PU H Y, CHEN Z, WANG B, et al.. A novel spatial-spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):7008-7022.
FU Y, Y SC, HUANG T S. Classification and feature extraction by simplexization[J]. IEEE Trans. on Information Forensics and Security, 2008, 3(1):91-100.
CUIM, PRASAD S. Spectral-angle-based discriminant analysis of hyperspectral data for robustness to varying illumination[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 9(9):4203-4214.
李志敏, 张杰, 黄鸿, 等.面向高光谱图像分类的半监督丛流形学习[J].光学 精密工程, 2015, 23(5):1434-1442.
LI ZH M, ZHANG J, HUANG H, et al.. Semi-supervised bundle manifold learning for hyperspectral image classification[J]. Opt. Precision Eng., 2015, 23(5):1434-1442. (in Chinese)
何芳, 王榕, 于强, 等.加权空谱局部保持投影的高光谱图像特征提取[J].光学 精密工程, 2017, 25(1):263-273.
HE F, WANG R, YU Q, et al.. Feature extraction of hyperspectral images with weighted spatial-spectral locally maintained projection[J]. Opt. Precision Eng., 2017, 25(1):263-273. (in Chinese)
0
浏览量
692
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构