浏览全部资源
扫码关注微信
1.中国科学院 安徽光学精密机械研究所 中国科学院大气光学重点实验室, 安徽 合肥 230031
2.中国科学技术大学 研究生院科学岛分院, 安徽 合肥 230026
[ "卢兴吉(1992-), 男, 安徽六安人, 博士研究生, 2014年于安徽建筑大学获得学士学位, 主要研究方向为激光与红外大气传输。E-mail:lxj168@mail.ustc.edu.cn" ]
曹振松(1979-), 男, 安徽宿州人, 硕士生导师, 2003年于合肥工业大学获得学士学位, 2008年于中国科学院获得博士学位, 主要从事激光与红外大气传输、激光光谱学与应用和痕量成分光电检测等方面的研究。E-mail:zscao@aiofm.ac.cn CAO Zhen-song, E-mail:zscao@aiofm.ac.cn
收稿日期:2018-05-03,
录用日期:2018-6-13,
纸质出版日期:2018-08-25
移动端阅览
卢兴吉, 曹振松, 黄印博, 等. 3.53 μm激光外差太阳光谱测量系统[J]. 光学 精密工程, 2018,26(8):1846-1854.
Xing-ji LU, Zhen-song CAO, Yin-bo HUANG, et al. Laser heterodyne spectrometer for solar spectrum measurement in the 3.53 μm region[J]. Optics and precision engineering, 2018, 26(8): 1846-1854.
卢兴吉, 曹振松, 黄印博, 等. 3.53 μm激光外差太阳光谱测量系统[J]. 光学 精密工程, 2018,26(8):1846-1854. DOI: 10.3788/OPE.20182608.1846.
Xing-ji LU, Zhen-song CAO, Yin-bo HUANG, et al. Laser heterodyne spectrometer for solar spectrum measurement in the 3.53 μm region[J]. Optics and precision engineering, 2018, 26(8): 1846-1854. DOI: 10.3788/OPE.20182608.1846.
激光外差技术具有高光谱分辨率特性,常用于地球大气探测研究,尤其是测量整层大气透过率及气体浓度反演。本论文设计了以窄线宽3.53 μm分布反馈式带间级联激光器作为本振光源的激光外差系统,实现了整层大气中水汽和甲烷气体吸收光谱的测量,系统光谱分辨率达到0.002 cm
-1
,信噪比为24.9 dB,达到多普勒线型吸收谱线的测量要求。利用自行搭建的测量系统测量了3.53 μm波段整层大气透过率,与辐射传输软件仿真分析结果进行对比,其绝对差值小于0.1,实测透过率与仿真透过率具有相同的变化趋势。该系统结合最小二乘法实现了实际大气中水汽和甲烷的同步反演,合肥地区春季水汽和甲烷的柱浓度均值分别为1.20 g/cm
2
和1.31 mg/cm
2
。通过对3.53 μm激光外差太阳光谱测量系统的研究,掌握了调提高光谱分辨率和信噪比的方法,为获取大气分子更加准确的吸收谱线和气体浓度反演奠定了基础。
Laser heterodyne technology has high spectral resolution characteristics
and it is commonly used for atmospheric measurements
especially in the measurement of total atmospheric transmittance and gas column density inversion. For these reasons
a heterodyne system with a narrow-linewidth 3.53 μm Distributed Feedback Interband Cascade Laser (DFB-ICL) as a local oscillator was designed to measure the absorption spectrum of water vapor and methane in the atmosphere. This system has a spectral resolution of 0.002 cm
-1
and a Signal-to-Noise Ratio (SNR) of 24.9 dB
which meets the requirements for Doppler broadened line shape measurements. The absolute difference between the measured total atmospheric transmittance and the simulated total atmospheric transmittance in the 3.53 μm band is less than 0.1 because of the high capability of laser heterodyne technology for spectrum detection. Therefore
the measured and simulated transmissions have the same overall variation. When combined with the least-squares method
the system realizes the simultaneous inversion of water vapor and methane column density in the atmosphere. The average column density of the water vapor and methane in the Hefei area was 1.20 g/cm
2
and 1.31 mg/cm
2
respectively
during the experiments. Based on this work
we have developed methods for improving spectral resolution and the signal-to-noise ratio of a laser heterodyne system
which provides the basis for obtaining more accurate absorption lines and the acquisition of more precise gas density measurements in the atmosphere.
SONNABEND G, KRÖTZ P, SCHMÜLLING F, et al.. Thermospheric/mesospheric temperatures on Venus:Results from ground-based high-resolution spectroscopy of CO 2 , in 1990/1991 and comparison to results from 2009 and between other techniques[J]. Icarus, 2012, 217(2):856-862.
REN Y, HOVENIER J N, HIGGINS R, et al.. Terahertz heterodyne spectrometer using a quantum cascade laser[J]. Applied Physics Letters, 2010, 97(16):161105.1-161105.2.
TAGUCHI M, OKANO S, FUKUNISHI H, et al.. Comparison of ozone profiles from ground-based laser heterodyne spectrometer and ozonesonde measurements[J]. Geophysical Research Letters, 1990, 17(13):2349-2352.
WIRTZ D, SCHMÜLLING F, SONNABEND G, et al.. Tunable heterodyne infrared spectrometer for atmospheric and astronomical studies[J]. Applied Optics, 2002, 41(15):2978-2984.
WIRTZ D, SONNABEND G, SCHIEDER R T. THIS:a tunable heterodyne infrared spectrometer[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2002, 58(11):2457-2463.
WEIDMANN D, TSAI T, MACLEOD N A, et al.. Atmospheric observations of multiple molecular species using ultra-high-resolution external cavity quantum cascade laser heterodyne radiometry[J]. Optics Letters, 2011, 36(11):1951-1953.
WILSON E L, MCLINDEN M L, MILLER J H, et al.. Miniaturized laser heterodyne radiometer for measurements of CO 2 , in the atmospheric column[J]. Applied Physics B, 2014, 114(3):385-393.
MELROY H R, WILSON E L, CLARKE G B, et al.. Autonomous field measurements of CO 2 in the atmospheric column with the miniaturized laser heterodyne radiometer (Mini-LHR)[J]. Applied Physics B Lasers & Optics, 2015, 120(4):609-615.
谈图. 红外激光外差光谱技术研究[D]. 北京: 中科院博士论文, 2015.
TAN T. The Study on Infrared Laser Heterodyne Spectroscopy Technology [D]. Beijing: Graduate University of the Chinese Academy of Sciences, 2015. (in Chinese)
谈图, 曹振松, 王贵师, 等. 4.4μm中红外激光外差光谱探测技术研究[J].光谱学与光谱分析, 2015, 35(6):1516-1519.
TAN T, CAO ZH S, WANG G SH, et al.. Study on the technology of 4.4μm mid-infrared laser heterodyne spectrum[J]. Spectroscopy and Spectral Analysis, 2015, 35(6):1516-1519. (in Chinese)
吴庆川, 黄印博, 谈图, 等.基于激光外差技术的高分辨率整层大气透过率测量[J].光谱学与光谱分析, 2017, 37(6):1678-1682.
WU Q CH, HUANG Y B, TAN T, et al.. High-resolution atmospheric-transmission measurement using a laser heterodyne radiometer[J]. Spectroscopy and Spectral Analysis, 2017, 37(6):1678-1682. (in Chinese)
BLANEY T G. Signal-to-noise ratio and other characteristics of heterodyne radiation receivers[J]. Space Science Reviews, 1975, 17(5):691-702.
PARVITTE B, ZÉINARI V, THIÉBEAUX C, et al.. Infrared laser heterodyne systems[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2004, 60(5):1193-1213.
PROTOPOPOV V V. Laser Heterodyning[M]. Berlin:Springer Press, 2009.
曹亚南, 王睿, 王贵师, 等.应用于激光外差辐射计的高精度太阳跟踪仪[J].光谱学与光谱分析, 2017, 37(11):3626-3631.
CAO Y N, WANG R, WANG G SH, et al.. Development of high precision sun tracker for the application in laser heterodyne radiometer[J]. Spectroscopy and Spectral Analysis, 2017, 37(11):3626-3631. (in Chinese)
常军, 沈本兰, 王希, 等.宽谱段、动态局部高分辨离轴主动反射变焦系统[J].光学 精密工程, 2016, 24(1):7-13.
CHANG J, SHEN B L, WANG X, et al.. Off-axis reflective active zoom system with broad spectrum and dynamic local high-resolution[J].Opt. Precision Eng., 2016, 24(1):7-13. (in Chinese)
白瑜, 廖志远, 廖胜, 等.共孔径消热差红外双波段光学系统[J].光学 精密工程, 2016, 24(2):268-277.
BAI Y, LIAO ZH Y, LIAO SH, et al.. Infrared dual band athermal optical system with common aperture[J].Opt. Precision Eng., 2016, 24(2):268-277. (in Chinese)
0
浏览量
310
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构