浏览全部资源
扫码关注微信
1.吉林大学 仪器科学与电气工程学院, 吉林 长春 130061
2.山西大学 激光光谱研究所 量子光学与光量子器件国家重点实验室, 山西 太原 030006
3.吉林大学 电子科学与工程学院 集成光电子学国家重点联合实验室, 吉林 长春 130012
4.吉林大学 生物与农业工程学院, 吉林 长春 130022
[ "李春光(1986-), 男, 吉林长春人, 助理研究员, 2012年于长春理工大学获得硕士学位, 2016年于吉林大学获得博士学位, 现为吉林大学仪器科学与电气工程学院博士后, 主要从事气体传感器和激光光谱方面的研究。E-mail:lcg0213@126.com" ]
林君(1954-), 男, 教授, 博士生导师, 1982年、1987年于长春地质学院分别获得学士、硕士学位, 主要研究方向为地球探测技术及仪器。E-mail:lin_jun@jlu.edu.cn LIN Jun, E-mail:lin_jun@jlu.edu.cn
收稿日期:2018-04-23,
录用日期:2018-5-29,
纸质出版日期:2018-08-25
移动端阅览
李春光, 董磊, 王一丁, 等. 基于TDLAS和ICL的紧凑中红外痕量气体探测系统[J]. 光学 精密工程, 2018,26(8):1855-1861.
Chun-guang LI, Lei DONG, Yi-ding WANG, et al. Compact mid-infrared trace gas detection system based on TDLAS and ICL[J]. Optics and precision engineering, 2018, 26(8): 1855-1861.
李春光, 董磊, 王一丁, 等. 基于TDLAS和ICL的紧凑中红外痕量气体探测系统[J]. 光学 精密工程, 2018,26(8):1855-1861. DOI: 10.3788/OPE.20182608.1855.
Chun-guang LI, Lei DONG, Yi-ding WANG, et al. Compact mid-infrared trace gas detection system based on TDLAS and ICL[J]. Optics and precision engineering, 2018, 26(8): 1855-1861. DOI: 10.3788/OPE.20182608.1855.
为了实现基于可调谐激光吸收光谱技术的高检测灵敏度、低功耗、小型中红外痕量气体传感器设计,结合锑化镓(GaSb)ICL和紧凑型多反射气体吸收气室(MPC)研制了基于不同结构传感光学核的两个小型TDLAS传感系统。两个传感光学核的总功率消耗为3.7 W,并通过探测甲烷(CH
4
)和甲醛(CH
2
O)分别验证了双层结构和单层结构系统的性能。实验结果表明:CH
4
和CH
2
O系统的检测灵敏度分别为5.0 nL/L和3.0 nL/L,测量精度分别为1.4 nL/L和1.0 nL/L。此外,相同配置情况下将两种结构系统应用于甲、乙烷(C
2
H
6
)同步检测,通过对校园环境中甲、乙烷进行连续66 h的监测试验,验证了设计的紧凑型中红外痕量气体检测系统能够稳定有效地工作,基本满足目前民用气体测量的稳定可靠、精度高、抗干扰能力强等要求。
Two compact Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor systems were developed based on different structural optical cores. The two optical cores combine two recent developments; gallium antimonide (GaSb)-based ICL and a compact multipass gas cell (MPC)
with the aim of developing a compact TDLAS-based sensor for mid-IR gas detection with high detection sensitivity and low power consumption. The two-floor structure sensor was used for methane (CH
4
) measurements and the single-floor structure sensor was used for formaldehyde (CH
2
O) concentration measurements
with the two optical sensor cores consuming 3.7 W of power. Detection limits of~5 nL/L and~3 nL/L with measurement precisions of~1.4 nL/L and~1 nL/L were achieved for CH
4
and CH
2
O concentration measurements
respectively. In addition
the two-structure system was used for CH
4
and C
2
H
6
detection under the same conditions over a period of 66 h campus. The results show that the sensors worked steadily and effectively. They can satisfy the system requirements of non-contact
online
real-time
high-precision
and rapid signal acquisition
as well as strong anti-jamming and high stability.
SCHIFF H. I., MACKAY G. I., BECHARA J. The use of tunable diode laser absorption spectroscopy for atmospheric measurements[J]. Res. Chem. Intermed., 1994, 20(3):525-556.
KRAEMPEK K, LEWICKI R, NÄHLE L, et al.. Continuous wave, distributed feedback diode laser based sensor for trace gas detection of ethane[J]. Appl. Phys. B, 2012, 106(2):251-255.
KÖHRING M, HUANG S, JAHJAH M, et al.. QCL-based TDLAS sensor for detection of NO towards emission measurements from ovarian cancer cells[J]. Appl. Phys. B, 2014, 117(1):445-451.
LEE B H, WOOD E C, ZAHNISER M S, et al.. Simultaneous measurements of atmospheric HONO and NO 2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers[J]. Appl. Phys. B, 2010, 102(2):417-423.
MCMANUS J B, ZAHNISER M S, NELSON D D, et al.. Application of quantum cascade lasers to high-precision atmospheric trace gas measurements[J]. Opt. Eng., 2010, 49(11):111124.
LIU K, WANG L, TAN T, et al..Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell[J]. Sensor Actuat. B:Chem., 2015, 220:1000-1005.
DURRY G, LI J S, VINOGRADOV I, et al..Near infrared diode laser spectroscopy of C 2 H 2 , H 2 O, CO 2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission[J]. Appl. Phys. B, 2010, 99(1):339-351.
SUCHALKIN S, BELENKY G, BELKIN M A. Rapidly tunable quantum cascade lasers[J]. IEEE J. Sel. Top. Quant. Elec., 2015, 21(6):1200509.
VURGAFTMAN I, BEWLEY W W, CANEDY C L, et al.. Interband cascade lasers with low threshold power and high output powers[J]. IEEE J. Sel. Top. Quant., 2013, 19(4):1200210.
BAUER A, LANGER F, DALLNER M, et al.. Emission wavelength tuning of interband cascade lasers in the 3-4μm spectral range[J]. Appl. Phys. Lett., 2009, 95(25):251103.
CANEDY C L, KIM C S, MERRITT C D, et al.. Interband cascade lasers with >40% continuous-wave wallplug efficiency at cryogenic temperatures[J]. Appl. Phys. Lett., 2015, 107(12):121102.
NAHLE L, HILDEBRANDT L, KAMP M, et al.. ICLs open opportunities for mid-IR sensing[J]. Laser Focus World, 2013, 49:70-73.
HIDEBRANDT L, NAHLE L. DFB laser diodes expand hydrocarbon sensing beyond 3μm[J]. Laser Focus World, 2012, 48:87-90.
NGUYEN BA T, TRIKI M, DESBROSSES G, et al..Quartz-enhanced photoacoustic spectroscopy sensor for ethylene detection with a 3.32μm distributed feedback laser diode[J]. Rev. Sci. Instrum., 2015, 86(2):023111.
VURGAFTMAN I, BEWLEY W W, CANEDY C L, et al.. Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power consumption[J]. Nat. Commun., 2011, 2:585.
KRZEMPEK K, JAHJAH M, LEWICKI R, et al..CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel compact multipass gas absorption cell[J]. Appl. Phys. B, 2013, 112(4):461-465.
OVERTON G. New multipass gas cells beat conventional designs[J]. Laser Focus World, 2013, 49:17.
BAMBERGER I, STIEGER J, BUCHMANN N, et al..Spatial variability of methane:Attributing atmospheric concentrations to emissions[J]. Environ. Pollut., 2014, 190:65-74.
SMITH F A, ELLIOTT S, BLAKE D R, et al.. Spatiotemporal variation of methane and other trace hydrocarbon concentrations in the Valley of Mexico[J]. Environ. Sci. Policy, 2002, 5(6):449-461.
LI J, PARCHATKA U, FISCHER H. A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser[J]. Anal. Methods, 2014, 6(15):5483-5488.
LUNDQVIST S, KLUCZYNSKI P, WEIH R, et al..Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm[J]. Appl. Opt., 2012, 51:6009-6013.
SUN K, TAO L, MILLER D J, et al.. Inline multi-harmonic calibration method for open-path atmospheric ammonia measurements[J]. Appl. Phys. B, 2013, 110(2):213-222.
TAO L, SUN K, MILLER D J, et al..Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants[J]. Appl. Phys. B, 2015, 119(1):153-164.
REHLE D, LELEUX D, ERDELYI M, et al..Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN[J]. Appl. Phys. B, 2001, 72(8):947-952.
0
浏览量
175
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构