浏览全部资源
扫码关注微信
1.中国科学院 合肥物质科学研究院 安徽光学精密机械研究所, 安徽 合肥 230031
2.中国科学技术大学, 安徽 合肥 230026
3.中国空气动力研究与发展中心, 四川 绵阳 621000
[ "聂伟(1989-), 男, 江西宜春人, 博士研究生, 2013年于内蒙古师范大学获得学士学位, 主要研究方向为激光光谱技术及其应用。E-mail:wnie@aiofm.ac.cn" ]
许振宇(1986-), 男, 安徽亳州人, 副研究员, 2007年于安徽大学获得学士学位, 2013年于中科院安徽光学精密机械研究所获得博士学位, 主要从事激光光谱技术及其在流场诊断中的应用研究。E-mail:zyxu@aiofm.ac.cn XU Zheng-yu, E-mail:zyxu@aiofm.ac.cn
阚瑞峰(1977-), 男, 辽宁锦州人, 研究员, 博士生导师, 2000年于长春光学精密机械学院获得学士学位, 2003年于中科院安徽光学精密机械研究所获得硕士学位, 2006年于中科院合肥物质科学研究院获得博士学位, 主要从事激光光谱高灵敏检测方法与应用技术的研究。E-mail:kanruifeng@aiofm.ac.cn KAN Rui-feng, E-mail:kanruifeng@aiofm.ac.cn
收稿日期:2018-04-09,
录用日期:2018-6-13,
纸质出版日期:2018-08-25
移动端阅览
聂伟, 许振宇, 阚瑞峰, 等. 可调谐二极管激光吸收光谱技术测量低温流场水汽露点温度[J]. 光学 精密工程, 2018,26(8):1862-1869.
Wei NIE, Zheng-yu XU, Rui-feng KAN, et al. Measurement of low water vapor dew-point temperature based on tunable diode laser absorption spectroscopy[J]. Optics and precision engineering, 2018, 26(8): 1862-1869.
聂伟, 许振宇, 阚瑞峰, 等. 可调谐二极管激光吸收光谱技术测量低温流场水汽露点温度[J]. 光学 精密工程, 2018,26(8):1862-1869. DOI: 10.3788/OPE.20182608.1862.
Wei NIE, Zheng-yu XU, Rui-feng KAN, et al. Measurement of low water vapor dew-point temperature based on tunable diode laser absorption spectroscopy[J]. Optics and precision engineering, 2018, 26(8): 1862-1869. DOI: 10.3788/OPE.20182608.1862.
露点温度是表征气体状态的一个重要参数,针对低温环境的低露点温度精确、快速、连续、原位测量的迫切需要,提出了可调谐二极管激光吸收光谱(TDLAS)技术对水汽露点温度测量的方案。首先与安徽省气象局的冷镜式露点仪一起对比测量标准温湿度箱内的露点温度,验证波长为1 381 nm的TDLAS系统露点温度测量的可行性及精度,然后结合一套开放式的测量装置,进行低温度环境(最低温度100 K)水汽露点温度原位测量。得到了实时的露点温度值,其中TDLAS露点测量结果与冷镜式露点仪测量结果一致性较好(相差小于1 K),TDLAS测量的时间分辨率为0.83 s,远远快于冷镜式露点仪的时间响应速度。对于更低气体温度的露点测量,获得了与气体温度变化趋势相同的露点温度,同时得到了随着环境温度降低,水汽逐渐趋向饱和的结论。
The dew-point temperature is an important parameter of gas. Moreover
there is an urgent need for developing techniques that can facilitate the accurate
rapid
continuous
and direct measurement of low dew point temperatures. In this regard
an approach based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) was developed. Firstly
our TDLAS hygrometer was compared with a chilled mirror hygrometer at Anhui Provincial Meteorological Bureau. Secondly
a free-path measurement apparatus was designed with an optical pathlength of approximately 3.8 m
and it was used to directly measure very low dew-point temperatures in a cryogenic chamber. Dew-point temperatures were obtained by standard formula. The results from TDLAS were compared with chilled mirror hygrometer.The maximum deviation is less than 1 K. In addition
the time resolution of the TDLAS system was determined to be approximately 0.83 s
which is shorter than the chilled mirror hygrometer.Through this experiment
we demonstrated that TDLAS technology was feasible to measure dew-point temperature at low temperatures.
CHEN Z, LU C. Humidity sensors:a review of materials and mechanisms[J]. Sensor Letters, 2005, 3(4):274-295.
PARYZ R. Recent developments at the NASA langley research center national transonic facility[J]. 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2011.
BUCHHOLZ B, KüHHOLZ B, SMIT H G J, et al.. Validation of an extractive, airborne, compact TDL spectrometer for atmospheric humidity sensing by blind intercomparison[J]. Applied Physics B, 2012, 110(2):249-262.
SKROTZKI J, CONNOLLY P, SCHNAITER M, et al.. The accommodation coefficient of water molecules on ice-cirrus cloud studies at the AIDA simulation chamber[J]. Atmospheric Chemistry and Physics, 2013, 13(8):4451-4466.
SARGENT M R, SAYRES D S, SMITH J B, et al.. A new direct absorption tunable diode laser spectrometer for high precision measurement of water vapor in the upper troposphere and lower stratosphere[J]. The Review of Scientific Instruments. 2013, 84(7):074102.
THORNBERRY T D, ROLLINS A W, GAO R S, et al.. A two-channel, tunable diode laser-based hygrometer for measurement of water vapor and cirrus cloud ice water content in the upper troposphere and lower stratosphere[J]. Atmospheric Measurement Techniques, 2015, 8(1):211-224.
QI Z M, HONMA I, ZHOU H. Humidity sensor based on localized surface plasmon resonance of multilayer thin films of gold nanoparticles linked with myoglobin[J]. Optics Letters, 2006, 31(12):1854-1856.
MADSEN H B, JENSEN C R, BOYSEN T. A comparison of the thermocouple psychrometer and the pressure plate methods for determination of soil water characteristic curves[J]. Journal of Soil Science, 1986, 37(3):357-362.
STEKELENBURG F K, LABOTS H. Measurement of water activity with an electric hygrometer[J]. International Journal of Food Science & Technology, 1991, 26(1):111-116.
赵振刚, 刘晓为, 王鑫, 等.基于555多谐振荡器检测的碳纳米管湿敏传感器[J].光学 精密工程, 2011, 19(1):118-123.
ZHAO ZH G, LIU X W, WANG X, et al.. Carbon nanotube sensors based on 555 multivibrators[J]. Opt. Precision Eng., 2011, 19(1):118-123.(in Chinese)
罗毅, 施云波, 杨昆, 等.用于探空仪的加热式湿度传感器及测量电路[J].光学 精密工程, 2014, 22(11):3050-3060.
LUO Y, SHI Y B, YANG K, et al.. Humidity sensor for radiosonde and its measuring circuit[J]. Opt. Precision Eng., 2014, 22(11):3050-3060.(in Chinese)
MARZęCKI M, JACHOWICZ R, TARAPATA G. Multilayer inkjet printed dew point hygrometer[J]. Sensors and Actuators B:Chemical, 2018, 264:76-83.
HEINONEN M, ANAGNOSTOU M, BELL S, et al.. Investigation of the equivalence of national dew-point temperature realizations in the -50℃ to +20℃ range[J]. International Journal of Thermophysics, 2011, 33(8-9):1422-1437.
HEINONEN M, ZVIZDIC D, SESTAN D. Intercomparison of the dew-point temperature realizations at LPM and MIKES in the range from -70℃ to +20℃[J]. International Journal of Thermophysics, 2011, 33(8-9):1451-1457.
KARDOS V J, SONEK G J. A dewpoint temperature sensor based on Nd 3+ -doped fiber fluorescence[J]. IEEE Photonics Technology Letters, 1995, 7(10):1198-1200.
ABE H, KITANO H. Development of humidity standard in trace-moisture region:Characteristics of humidity generation of diffusion tube humidity generator[J]. Sensors and Actuators A:Physical, 2006, 128(1):202-208.
VOGELMANN H, SUSSMANN R, TRICKL T, et al.. Intercomparison of atmospheric water vapor soundings from the differential absorption lidar (DIAL) and the solar FTIR system on Mt. Zugspitze[J]. Atmospheric Measurement Techniques, 2011, 4(5):835-841.
BUCHHOLZ B, AFCHINE A, KLEIN A, et al.. HAI, a new airborne, absolute, twin dual-channel, multi-phase TDLAS-hygrometer:background, design, setup, and first flight data[J]. Atmospheric Measurement Techniques, 2017, 10(1):35-57.
WEI Y, CHANG J, LIAN J, et al.. Study of a distributed feedback diode laser based hygrometer combined Herriot-gas cell and waterless optical components[J]. Photonic Sensors, 2016, 6(3):214-220.
ZHANG K, LIU S, CHEN S, et al.. Optical humidity detection based on tunable diode laser absorption spectroscopy[J]. SPIE, 2017:102561Q.
姚路, 刘文清, 阚瑞峰, 等.小型化TDLAS发动机测温系统的研究及进展[J].实验流体力学, 2015, 29(1):71-76.
YAO L, LIU W Q, KAN R F, et al.. Research and development of a compact TDLAS system to measure scramjet combusition temperature[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1):71-76. (in Chinese)
袁松, 阚瑞峰, 何亚柏, 等.基于可调谐半导体激光光谱大气CO 2 监测仪[J].中国激光, 2014, 41(12):170-175.
YUAN S, KAN R F, HE Y B, et al.. Tunable diode laser spectroscopy system for carbon dioxide monitoring[J]. Chinese Journal of Lasers, 2014, 41(12):170-175. (in Chinese)
MURPHY D M, KOOP T. Review of the vapour pressures of ice and supercooled water for atmospheric applications[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(608):1539-1565.
GREENSPAN L. Functional equations for the enhancement factors for CO 2 -free moist air[J]. J. Res. NBS:A Phys. Chem., 1976, 80A(1):41-44.
聂伟, 阚瑞峰, 许振宇, 等.基于TDLAS技术的水汽低温吸收光谱参数测量[J].物理学报, 2017, 66(20):91-96.
NIE W, KAN R F, XU ZH Y, et al.. Measuring spectral parameters of water vapor at low temperature based on tunable diode laser absorption spectroscopy[J]. Acta Physica Sinica, 2017, 66(20):91-96. (in Chinese)
0
浏览量
320
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构