浏览全部资源
扫码关注微信
1.山西大学 激光光谱研究所 量子光学与光量子器件国家重点实验室, 山西 太原 030006
2.山西大学 极端光学协同创新中心, 山西 太原 030006
[ "卫婷婷(1996-), 女, 山西运城人, 2017年于太原科技大学获得学士学位, 主要从事石英增强光声光谱技术方面的研究。E-mail:waitingonce@163.com" ]
董磊(1979-), 男, 河南新乡人, 教授, 博士生导师, 2002年、2007年于山西大学分别获得学士、博士学位, 主要从事光声光谱痕量气体检测的研究。E-mail:donglei@sxu.edu.cn DONG Lei, E-mail:donglei@sxu.edu.cn
收稿日期:2018-04-24,
录用日期:2018-5-29,
纸质出版日期:2018-08-25
移动端阅览
卫婷婷, 武红鹏, 尹旭坤, 等. 湿度和SF6在石英增强光声光谱中对CO分子弛豫率的影响[J]. 光学 精密工程, 2018,26(8):1870-1875.
Ting-ting WEI, Hong-peng WU, Xu-kun YIN, et al. Impact of humidity and SF6 on CO detection based on quartz-enhanced photoacoustic spectroscopy[J]. Optics and precision engineering, 2018, 26(8): 1870-1875.
卫婷婷, 武红鹏, 尹旭坤, 等. 湿度和SF6在石英增强光声光谱中对CO分子弛豫率的影响[J]. 光学 精密工程, 2018,26(8):1870-1875. DOI: 10.3788/OPE.20182608.1870.
Ting-ting WEI, Hong-peng WU, Xu-kun YIN, et al. Impact of humidity and SF6 on CO detection based on quartz-enhanced photoacoustic spectroscopy[J]. Optics and precision engineering, 2018, 26(8): 1870-1875. DOI: 10.3788/OPE.20182608.1870.
为了研究六氟化硫(SF
6
)气体分子和水汽(H
2
O)对一氧化碳(CO)气体分子的弛豫率的影响,建立了一个基于石英增强光声光谱(QEPAS)技术的痕量气体传感器系统。采用1.57
μ
m的近红外分布式反馈二极管激光器作为激励光源,并对不同SF
6
和H
2
O气体浓度下的CO的光声信号进行对比研究。首先用CO传感器系统探测CO与N
2
的气体混合物中CO的光声信号,然后在CO与N
2
气体混合物中加入不同浓度的SF
6
气体,分别探测不同浓度SF
6
气体下的CO光声信号强度。最后在CO与N2的气体混合物中加入不同浓度H
2
O,探测加入H
2
O后的CO的光声信号强度。实验结果表明随着CO和N
2
气体混合物中SF
6
气体浓度的增加,CO的光声信号幅值几乎没有变化,而在混合物中加入2.5%的H
2
O后,发现CO的光声信号提高了约5倍。因此,SF
6
对CO气体的弛豫率没有明显的影响,然而H
2
O的添加能够有效缩短CO气体的弛豫时间。
A CO sensor system based on quartz-enhanced photoacoustic spectroscopy technology was established to study the effect of sulfur hexafluoride (SF
6
) and water vapor (H
2
O) on the relaxation rate of carbon monoxide (CO) gas molecules. A 1.57
μ
m near-infrared distributed feedback diode laser was used as the light source to compare the photoacoustic signal amplitudes of CO under different concentrations of SF
6
and H
2
O. First
a CO sensor system was used to detect photoacoustic signals from CO in a gas mixture of CO and N
2
. Then
different concentrations of SF
6
gas were added to the CO and N
2
gas mixture and the photoacoustic signal amplitudes of CO were detected. Finally
H
2
O was added to the gas mixture of CO and N
2
before detecting the photoacoustic signal amplitudes of CO. The experimental results show that with increasing concentration of SF
6
in the gas mixture of CO and SF
6
the photoacoustic signal of CO remains constant; however
the addition of 2.5% H
2
O to the mixture results in a five-fold increase of the photoacoustic signal of CO. Therefore
H
2
O has an obvious effect on the relaxation rate of CO gas
while SF
6
has none.
PROCKOP L D, CHICHKOVA R I. Carbon monoxide intoxication:an updated review[J]. Journal of the Neurological Sciences, 2007, 262(1-2):122-130.
董磊, 马维光, 张雷, 等.基于脉冲石英增强光声光谱的中红外超高灵敏CO探测[J].光学学报, 2014, 34(1):0130002.
DONG L, MA W G, ZHANG L, et al.. Mid-IR ultra-sensitive CO detection based on pulsed quartz enhanced photoacoustic spectroscopy[J]. Journal of Optics, 2014, 34(1):0130002. (in Chinese)
KOSTEREV A A, BAKHIRKIN Y A, CURL R F, et al.. Quartz-enhancd photoacoustic spectroscopy[J]. Optics Letters, 2002, 27(21):1902-1904.
张志荣, 夏滑, 董凤忠, 等.利用可调谐半导体激光光谱法同时在线监测多组分气体浓度[J].光学 精密工程, 2013, 21(11):2771-2777.
ZHANG ZH R, XIA H, DONG F ZH, et al.. Simultaneous and on-line detection of multiple gas concentration with tunable diode laser absorption spectroscopy[J]. Opt. Precision Eng., 2013, 21(11):2771-2777. (in Chinese)
郑守国, 李淼, 张健, 等.痕量N 2 O气体监测系统的设计与实现[J].光学 精密工程, 2012, 20(10):2154-2160.
DENG SH G, LI M, ZHANG J, et al.. Design and implementation of trace N 2 O detection system[J]. Opt. Precision Eng., 2012, 20(10):2154-2160. (in Chinese)
廖海洋, 杨并上, 徐泽宇.有害气体远程监测方法及系统研究[J].光学 精密工程, 2004, 12(3):144-127.
LIAO H Y, YANG B SH, XU Z Y. Harmful gas Iong-distance measuring method and system[J]. Opt. Precision Eng., 2004, 12(3):144-127. (in Chinese)
MA Y F, TONG Y, HE Y, et al.. High-power DFB diode laser-based CO-QEPAS sensor:optimization and performance[J]. Sensors, 2018, 18(2):122.
YIN X, DONG L, WU H, et al.. Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser[J].Sensors and Actuators B:Chemical, 2017, 247:329-335.
WU H, YIN X, DONG L, et al.. Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork[J]. Applied Physics Letters, 2017, 110(12):121104.
PATIMISCO P, SCAMARCIO G, TITTEL F K, et al.. Quartz-enhanced photoacoustic spectroscopy:A review[J]. Sensors(Basel), 2014, 14(4):6165-6206.
DONG L, WU H P, ZHENG H D, et al.. Double ascoustic micro-resonator quartz enhanced photoacoustic spectroscopy[J]. Optics Letters, 2014, 39(8):2479-2482.
WU H, DONG L, REN W, et al.. Position effects of acoustic micro-resonator in quartz enhanced photoacoustic spectroscopy[J]. Sensors and Actuators B:Chemical, 2015, 206:364-370.
WYSOCKI G, KOSTEREV A A, TITTEL F K, et al.. Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO 2 at λ=2μm[J]. Applied Physics B, 2006, 85(2):301-306.
YIN X, DONG L, ZHENG H, et al.. Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser[J]. Sensors(Basel), 2016, 16(2):162.
KOSTEREV A A, BAKHIRKIN Y A, TITTEL F K. Ultrasensitive gas detection by quart-enhanced photoacoustic spectroscopy in the fundamental molecular spectroscopy in the fundamental molecular absorption bands region[J]. Applied Physics B, 2005, 80(1):133-138.
BUCHWALD M I, BAUER S H. Vibrational Relaxation in carbon dioxide with selected collision partners.I.water and heavy water[J]. The Journal of Physical Chemistry C, 1972, 76(22):3108-3115.
DONG L, KOSTEREV A A, THOMAZY D, et al.. QEPAS spectrophones:design, optimization, and performance[J]. Applied Physics B, 2010, 100(3):627-635.
0
浏览量
169
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构