浏览全部资源
扫码关注微信
1.吉林大学 生物与农业工程学院, 吉林 长春 130022
2.吉林大学 电子科学与工程学院, 吉林 长春 130012
[ "党敬民(1987-), 男, 天津人, 博士, 助理研究员, 2011年、2016年于吉林大学分别获得学士、博士学位, 现为吉林大学生物与农业工程学院博士后, 主要从事红外传感与超宽带传感方面的研究。E-mail:jmdang@jlu.edu.cn" ]
孙裕晶(1969-), 男, 山西介休人, 教授, 硕士生导师, 2000年、2005年于吉林大学分别获得硕士、博士学位, 主要从事智能农业机械和智能装备测试技术等方面的研究。E-mail:syj@jlu.edu.cn SUN Yu-jing, E-mail:syj@jlu.edu.cn
收稿日期:2018-04-18,
录用日期:2018-6-1,
纸质出版日期:2018-08-25
移动端阅览
党敬民, 于海业, 宋芳, 等. 应用于早期火灾探测的CO传感器[J]. 光学 精密工程, 2018,26(8):1876-1881.
Jing-min DANG, Hai-ye YU, Fang SONG, et al. Development of a CO sensor for early fire detection[J]. Optics and precision engineering, 2018, 26(8): 1876-1881.
党敬民, 于海业, 宋芳, 等. 应用于早期火灾探测的CO传感器[J]. 光学 精密工程, 2018,26(8):1876-1881. DOI: 10.3788/OPE.20182608.1876.
Jing-min DANG, Hai-ye YU, Fang SONG, et al. Development of a CO sensor for early fire detection[J]. Optics and precision engineering, 2018, 26(8): 1876-1881. DOI: 10.3788/OPE.20182608.1876.
为了实现对火灾的早期探测,设计了一种高精度、高灵敏度CO传感器。该传感器以激射波长的为2.33 μm的连续型分布反馈激光器为光源。采用波长调制光谱(WMS)技术与一次谐波量化的二次谐波检测方法相结合的研究手段,对典型环境压力下复杂、重叠的光谱吸收特征进行分离,从而实现了良好的选择性和较高的灵敏度。基于Allan Werle方差的系统长期稳定性评估分析表明,系统的检测限(LoD)为1.18 μL/L;当积分时间达到205 s时,系统能够实现0.08 μL/L的测量精度。最后,纸、棉花以及松木等容易产生阴燃的可燃物燃烧实验表明,所研制的传感器具有良好的早期火灾探测能力。
A high-precision
high-sensitivity carbon monoxide (CO) sensor was developed for early fire detection. This sensor relied on a continuous wave distributed feedback (DFB) laser emitting at a wavelength of approximately 2.33 μm as an excitation source. A 2
f
/1
f
Wavelength Modulation Spectroscopy (WMS) strategy was adopted to isolate complex
overlapping spectral absorption features associated with ambient pressure and to achieve excellent specificity and high detection sensitivity. Allan-Werle deviation analysis was used to evaluate the long-term performance of the CO sensor system. A Limit of Detection (LoD) of 1.18 parts per million by volume (μL/L) was achieved with a measurement precision of 0.08 μL/L for an optimal integration time of~205 s. The early fire detection of paper
cotton
and pine wood was conducted in the field
which verified the reliable and robust operation of the developed sensor.
BOGUE R. Sensors for fire detection[J]. Sensor Review, 2013, 33(2):99-103.
COURBAT J, PASCU M, GUTMACHER D, et al.. A colorimetric CO sensor for fire detection[J]. Procedia Engineering, 2011, 25:1329-1332.
WANG J, WANG H. Tunable fiber laser based photoacoustic gas sensor for early fire detection[J]. Infrared Physics & Technology, 2014, 65(7):1-4.
GUTMACHER D, HOEFER U, WÖLLENSTEIN J. Gas sensor technologies for fire detection[J]. Sensors & Actuators B Chemical, 2012, 175(6):40-45.
LACKNER M. Tunable Diode Laser Absorption Spectroscopy (TDLAS) in the process industries-a review[J]. Reviews in Chemical Engineering, 2007, 23(2):65-147.
LI J, YU B, ZHAO W, et al.. A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy[J]. Applied Spectroscopy Reviews, 2014, 49(8):666-691.
KOSTEREV A A, TITTEL F K. Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser[J]. Applied Optics, 2004, 43(33):6213-7.
YIN X, DONG L, ZHENG H, et al.. Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser[J]. Sensors, 2016, 16(2):162.
CHEN S J, HOVDE D C, PETERSON K A, et al.. Fire detection using smoke and gas sensors[J]. Fire Safety Journal, 2007, 42(8):507-515.
蒋亚龙, 祝玉泉, 王进军.可调谐半导体激光吸收光谱技术用于火灾探测——初步试验[J].自然灾害学报, 2011, 20(1):56-61.
JIANG Y L, ZHU Y Q, WANG J J. Application of tunable diode laser absorption spectroscopy to fire detection:Preliminary experiment[J]. Journal of Natural Disasters, 2011, 20(1):56-61. (in Chinese)
TAO L, SUN K, KHAN M A, et al.. Compact and portable open-path sensor for simultaneous measurements of atmospheric N 2 O and CO using a quantum cascade laser[J]. Optics Express, 2012, 20(27):28106-28118.
PHILIPPE L C, HANSON R K. Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows[J]. Applied Optics, 1993, 32(30):6090.
LI J, PARCHATKA U, FISCHER H. Development of field-deployable QCL sensor for simultaneous detection of ambient N 2 O and CO[J]. Sensors & Actuators B Chemical, 2013, 182(3):659-667.
GOLDENSTEIN C S, SCHULTZ I A. Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes[J]. Applied Optics, 2014, 53(3):356-67.
KIM D E, LEE H J, CHA E J, et al.. Development of non-invasive optical transcutaneous Pco2 gas sensor and analytic equipment[J]. Am. J. Public Hygiene, 2004, 19:730-733.
YU Y, SANCHEZ N P, GRIFFIN R J, et al.. CW EC-QCL-based sensor for simultaneous detection of H 2 O, HDO, N 2 O and CH 4 using multi-pass absorption spectroscopy[J]. Optics Express, 2016, 24(10):10391-10401.
ALLAN D W. Statistics of atomic frequency standards[J]. Proc. IEEE, 1966, 54(2):221-230.
赵辉, 刘锟, 蔡廷栋, 等.中心波长2.33μm附近CO和CH 4 分子的同时探测[J].强激光与粒子束, 2011, 23(9):2369-2372.
ZHAO H, LIU K, CAI T D, et al.. Simultaneous trace detection of carbon monoxide and methane at 2.33μm[J]. High Power Laser & Particle Beams, 2011, 23(9):2369-2372. (in Chinese)
BRADSHAW J L, BRUNO J D, SONNENFROH D M. Small low-power consumption CO-sensor for post-fire cleanup aboard spacecraft[J]. SPIE, 2011, 8032(10):2089-2092.
0
浏览量
228
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构