浏览全部资源
扫码关注微信
1.中国科学院 安徽光学精密机械研究所 环境光学与技术重点实验室, 安徽 合肥 230031
2.中国科学技术大学, 安徽 合肥 230026
[ "项衍(1990-), 男, 安徽宿松人, 博士, 2013年于安徽师范大学获得学士学位, 2018年于中国科学技术大学获得博士学位, 主要从事激光雷达大气探测、数值模式模拟和数据同化等方面的研究。E-mail: yxiang@aiofm.ac.cn" ]
张天舒(1977-), 男, 吉林长春人, 研究员, 博士生导师, 1999年于长春理工大学获得学士学位, 2003年、2005年于中科院安光所分别获得硕士、博士学位, 主要从事大气环境污染光学检测技术、目标散射特性及遥感监测技术等方面的研究。E-mail:tszhang@aiofm.ac.cn ZHANG Tian-shu, E-mail:tszhang@aiofm.ac.cn
收稿日期:2018-03-26,
录用日期:2018-5-23,
纸质出版日期:2018-08-25
移动端阅览
项衍, 张天舒, 范广强, 等. 基于差分吸收激光雷达和数值模式探测杭州夏季臭氧分布[J]. 光学 精密工程, 2018,26(8):1882-1887.
Yan XIANG, Tian-shu ZHANG, Guang-qiang FAN, et al. Differential absorption lidar combined with numerical model used for detecting distribution of ozone during summer in Hangzhou[J]. Optics and precision engineering, 2018, 26(8): 1882-1887.
项衍, 张天舒, 范广强, 等. 基于差分吸收激光雷达和数值模式探测杭州夏季臭氧分布[J]. 光学 精密工程, 2018,26(8):1882-1887. DOI: 10.3788/OPE.20182608.1882.
Yan XIANG, Tian-shu ZHANG, Guang-qiang FAN, et al. Differential absorption lidar combined with numerical model used for detecting distribution of ozone during summer in Hangzhou[J]. Optics and precision engineering, 2018, 26(8): 1882-1887. DOI: 10.3788/OPE.20182608.1882.
为获取杭州市夏季臭氧浓度时空分布特征和气象要素对臭氧浓度的影响,利用臭氧差分吸收激光雷达开展观测,同时利用WRF-Chem模式模拟臭氧时空特征和气象要素。实验结果表明:臭氧浓度模拟结果与激光雷达的观测结果具有很好的一致性。2016年夏季,杭州市18天内发生了4次臭氧重污染,每次持续2到5天,最高浓度达550 nL/L。高空1~2 km存在较高浓度的臭氧污染层,并存在垂直和水平传输,对近地面臭氧污染有明显影响。近地面臭氧浓度平均最低值出现在凌晨2时左右,为75 nL/L;平均浓度最高值在中午12时左右出现,为90 nL/L。近地面臭氧浓度的日变化明显,而高空的臭氧浓度日变化不明显。臭氧差分吸收激光雷达系统对臭氧时空分布的探测是可靠的。强太阳辐射、高温、低湿都是臭氧污染形成的有利环境条件,而强风对局地臭氧有扩散作用,降雨对臭氧有很好的消除作用。
An ozone differential absorption lidar (DIAL) was used to carry out observations of the spatial and temporal distribution of summer ozone concentrations in Hangzhou
China
and to study how they are influenced by meteorological elements. The WRF-Chem model was used to simulate the characteristics of the ozone distribution
and for the analysis of meteorological factors. The simulated values for ozone concentration were in good agreement with the observed values obtained using the DIAL. In the summer of 2016
ozone pollution occurred on four occasions in 18 days
with each occasion lasting between two to five days
and with the highest concentration of 550 nL/L detected. There was a highly concentrated ozone layer at an altitude of one to two km
with vertical and horizontal movement having a significant influence on the ozone pollution near the ground. The lowest mean value of ozone concentration near the ground was 75 nL/L
which occurred around 2:00 am
while the average highest value was 90 nL/L
which occurred at 12:00 am. The daily ozone concentration near ground level exhibited diurnal variation
a pattern not apparent in the upper air. The DIAL system was reliable for the detection of ozone. Conditions of strong solar radiation
high temperature
and low humidity were seen as being conducive to the formation of ozone
while strong winds and rain had a diffusing effect.
王振亚, 李海洋, 周士康.平流层中臭氧耗减化学研究进展[J].科学通报, 2001(8):619-625.
WANG ZH Y, LI H Y, ZHOU SH K. Progress in ozone depletion chemistry in stratosphere[J]. Chinese Scientific Bulletin, 2001(8):619-625.(in Chinese)
张健恺. 气候变化对北半球臭氧总量变化影响的研究[D]. 兰州: 兰州大学, 2016.
ZHANG J K. A Study of Climate Change Impact on Total Ozone Column Over the Northern Hemisphere [D]. Lanzhou: Lanzhou University, 2016. (in Chinese)
吴瑞霞. 北京市夏季污染物垂直分布特征研究[D]. 南京: 南京气象学院, 2004.
WU R X. Air Pollution Characterictics of Beijing city in Summer [D]. Nanjing: Nanjing Institute of Meteorology, 2004. (in Chinese)
刘秋武, 陈亚峰, 王杰, 等.差分吸收NO 2 激光雷达波长漂移和能量波动对浓度反演的影响[J].光学 精密工程, 2018, 26(2):253-260.
LIU Q W, CHEN Y F, WANG J, et al.. Effects of wavelength shift and energy fluctuation on inversion of NO 2 differential absorption lidar[J]. Opt. Precision Eng., 2018, 26(2):253-260.(in Chinese)
赵志龙, 吴谨, 王海涛, 等.微弱回波条件下差分合成孔径激光雷达成像实验演示[J].光学 精密工程, 2018, 26(2):276-283.
ZHAO ZH L, WU J, WANG H T, et al.. Experimental demonstration of differential synthetic aperture ladar imaging at very low return level[J]. Opt. Precision Eng., 2018, 26(2):276-283.(in Chinese)
范广强, 刘建国, 刘文清, 等.基于差分吸收激光雷达的一种新的对流层臭氧浓度反演算法[J].光谱学与光谱分析, 2012(12):3304-3308.
FAN G Q, LIU J G, LIU W Q, et al.. A new retrieval method for ozone concentration at troposphere based on differential absorption lidar[J]. Spectroscopy and Spectual Analysis, 2012(12):3304-3308.(in Chinese)
苑克娥, 张世国, 胡顺星, 等.对流层低层臭氧的差分吸收激光雷达测量[J].强激光与粒子束, 2013(3):553-556.
YUAN K E, ZHANG SH G, HU SH X, et al.. Measurements of ozone using ultraviolet differential absorption lidar in low troposphere[J]. High Power Laser and Particle Beams, 2013(3):553-556.(in Chinese)
XING C Z, LIU C, WANG S S, et al.. Observations of the vertical. distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China[J]. Atmos Chem. Phys., 2017, 17(23):14275-14289.
GAO J H, ZHU B, XIAO H, et al.. A case study of surface ozone source apportionment. during a high concentration episode, under frequent shifting wind conditions over the Yangtze River Delta, China[J]. Sci. Total Envion., 2016, 544:853-863.
LI M M, SONG Y, MAO Z C, et al.. Impacts of thermal circulations induced by urbanization on ozone formation in the Pearl River Delta region, China[J]. Atmos Environ., 2016, 127:382-392.
0
浏览量
289
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构