浏览全部资源
扫码关注微信
1.重庆大学 输配电装备及系统安全与新技术国家重点实验室, 重庆 400044
2.国网浙江省电力有限公司, 浙江 杭州 310012
[ "王品一(1992-), 男, 北京人, 博士研究生, 2014年于重庆大学获得学士学位, 主要从事电气设备故障特征气体拉曼光谱检测方面的研究。E-mail:Wang.Pinyi@outlook.com" ]
万福(1987-), 男, 湖南南县人, 博士, 讲师, 硕士生导师, 2010年于重庆理工大学获得学士学位, 2015年于重庆大学获得博士学位, 主要从事电气设备状态特征气体光谱检测及诊断等方面的研究。E-mail:fu.wan@hotmail.comWAN Fu, E-mail:fu.wan@hotmail.com
收稿日期:2018-05-10,
录用日期:2018-6-15,
纸质出版日期:2018-08-25
移动端阅览
王品一, 万福, 王建新, 等. 注入锁定腔增强拉曼光谱微量气体检测技术[J]. 光学 精密工程, 2018,26(8):1917-1924.
Pin-yi WANG, Fu WAN, Jian-xin WANG, et al. Trace gas detection using cavity-enhanced Raman spectroscopy with injection locking[J]. Optics and precision engineering, 2018, 26(8): 1917-1924.
王品一, 万福, 王建新, 等. 注入锁定腔增强拉曼光谱微量气体检测技术[J]. 光学 精密工程, 2018,26(8):1917-1924. DOI: 10.3788/OPE.20182608.1917.
Pin-yi WANG, Fu WAN, Jian-xin WANG, et al. Trace gas detection using cavity-enhanced Raman spectroscopy with injection locking[J]. Optics and precision engineering, 2018, 26(8): 1917-1924. DOI: 10.3788/OPE.20182608.1917.
为了提高微量气体的拉曼散射强度,本文设计并搭建了注入锁定腔增强拉曼光谱微量气体检测平台。半导体激光器(波长为638 nm,功率为15 mW)输出到由三块高反镜组成的V型增强腔中,结合注入锁定技术,腔内激光强度达到7.5 W,实现了500倍的增强效果。利用该实验平台对微量单一气体及其混合气体进行了拉曼检测,并根据拉曼特征谱峰选取原则及信噪比大于3的原则,确定了H
2
、CO、CO
2
、CH
4
、C
2
H
6
、C
2
H
4
、C
2
H
2
的特征拉曼谱峰分别为4 156,2 143,1 388,2 918,2 955,1 344,1 975 cm
-1
,最小检测极限分别为10.2,21.7,9.4,2.1,8.9,4.9,3.3 Pa。腔增强拉曼光谱法可以实现微量同核双原子气体检测及利用单一波长激光的混合气体同时检测,具有替代气体检测传统光谱方法的潜力。
In order to improve the Raman scattering intensity of a trace gas
a cavity-enhanced Raman spectroscopy (CERS) technique with injection locking was introduced. A diode laser input (638 nm
15 mW) was coupled into a V-shaped enhanced cavity composed of three highly reflective mirrors. Using the injection locking technique
an intracavity laser beam was generated and enhanced by a factor of 500 to obtain a power of 7.5 W. The Raman spectra of the individual trace gases and the mixture were obtained. According to the principle of Raman spectrum peak selection and a signal-to-noise ratio greater than 3
the characteristic Raman peaks of H
2
CO
CO
2
CH
4
C
2
H
6
C
2
H
4
and C
2
H
2
are determined as 4 156
2 143
1 388
2 918
2 955
1 344
and 1 975 cm
-1
respectively
and the limits of detection are determined as 10.2
21.7
9.4
2.1
8.9
4.9
and 3.3 Pa. Trace homonuclear diatomic gases and mixed gases can thus be detected simultaneously using a single-wavelength diode laser and CERS. Therefore
CERS has the potential to become an alternative optical technology for gas detection.
CAMPBELL E K, HOLZ M, MAIER J P, et al.. Gas phase absorption spectroscopy of C+60 and C+70 in a cryogenic ion trap:comparison with astronomical measurements[J]. Astrophysical Journal, 2016, 822(1):17.
MICHELUCCI U, VENTURINI F. Novel semi-parametric algorithm for interference-immune tunable absorption spectroscopy gas sensing[J]. Sensors, 2017, 17(10):2281.
WOJTAS J, GLUSZEK A, HUDZIKOWSKI A, et al.. Mid-infrared trace gas sensor technology based on intracavity quartz-enhanced photoacoustic spectroscopy[J]. Sensors, 2017, 17(3):513.
WANG Q, WANG Z, CHANG J, et al.. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing[J]. Optics Letters, 2017, 42(11):2114.
HECOBIAN A, YALIN A P, MCHALE L E. Open-path cavity ring-down spectroscopy for trace gas measurements in ambient air[J]. Optics Express, 2016, 24(5):5523.
CALL M, SCHULZ K G, CARVALHO M C, et al.. Technical note:Coupling infrared gas analysis and cavity ring down spectroscopy for autonomous, high-temporal-resolution measurements of DIC and δ13C-DIC[J]. Biogeosciences, 2017, 14:1-17.
RAMAN C V, KRISHNAN K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048):501-502.
MALARD L M, PIMENTA M A, DRESSELHAUS G, et al.. Raman spectroscopy in graphene[J]. Physics Reports, 2009, 473(5):51-87.
F. T F, KOENIG J L. Raman spectra of graphite[J]. Journal of Chemical Physics, 1970, 53(3):1126-1130.
KNIGHT D S, WHITE W B. Characterization of diamond films by Raman spectroscopy[J]. Journal of Materials Research, 1989, 4(2):385-393.
HUNGER D, STEINMETZ T, COLOMBE Y, et al.. Fiber Fabry-Perot cavity with high finesse[J]. New Journal of Physics, 2010, 12(6):065038.
LEY M, LOUDON R. Quantum theory of high-resolution length measurement with a Fabry-Perot interferometer[J]. Optica Acta International Journal of Optics, 1987, 34(2):227-255.
LANG R. Injection locking properties of a semiconductor laser[J]. IEEE J. Quantum Electron, 1982, 18(6):976-983.
KUROKAWA K. Injection locking of microwave solid-state oscillators[J]. Proc. IEEE, 1973, 61(10):1386-1410.
KIKUCHI K, OKOSHI T, TANIKOSHI S. Amplitude modulation of an injection-locked semiconductor laser for heterodyne-type optical communications[J]. Optics Letters, 1984, 9(3):99-101.
0
浏览量
327
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构