浏览全部资源
扫码关注微信
1.汕头大学 工学院 智能制造技术教育部重点实验室, 广东 汕头 515063
2.吉林大学 电子科学与工程学院 集成光电子学国家重点联合实验室, 吉林 长春 130012
[ "叶玮琳(1984-), 女, 广东潮州人, 博士, 副教授, 2007年、2009年、2012年于吉林大学分别获得学士、硕士、博士学位, 主要从事红外气体传感的研究。E-mail:wlye@stu.edu.cn" ]
郑传涛(1982-), 男, 河南商丘人, 博士, 副教授, 博士生导师, 2005年、2007年、2010年于吉林大学分别获得学士、硕士和博士学位, 主要研究红外吸收光谱气体传感技术及应用。E-mail:zhengchuantao@jlu.edu.cnZHENG Chuan-tao, E-mail:zhengchuantao@jlu.edu.cn
收稿日期:2018-04-24,
录用日期:2018-6-13,
纸质出版日期:2018-08-25
移动端阅览
叶玮琳, 周波, 余红志, 等. 中红外大气甲烷乙烷双组分气体的同步移动监测[J]. 光学 精密工程, 2018,26(8):1938-1944.
Wei-lin YE, Bo ZHOU, Hong-zhi YU, et al. In-motion monitoring of atmospheric methane and ethane using a mid-infrared dual-gas simultaneous detection sensor[J]. Optics and precision engineering, 2018, 26(8): 1938-1944.
叶玮琳, 周波, 余红志, 等. 中红外大气甲烷乙烷双组分气体的同步移动监测[J]. 光学 精密工程, 2018,26(8):1938-1944. DOI: 10.3788/OPE.20182608.1938.
Wei-lin YE, Bo ZHOU, Hong-zhi YU, et al. In-motion monitoring of atmospheric methane and ethane using a mid-infrared dual-gas simultaneous detection sensor[J]. Optics and precision engineering, 2018, 26(8): 1938-1944. DOI: 10.3788/OPE.20182608.1938.
为了实现大范围、长距离的大气烷烃气体检测,将研制的中红外双组分甲烷、乙烷传感器以车载方式,对某一地区的大气甲、乙烷含量进行了移动探测。该传感器系统采用中红外室温连续的带间级联激光器(ICL)作为光源,采用高速数据采集卡采集信号,利用上位机LabVIEW平台编写程序产生激光器扫描及调制信号、获取探测器信号并提取二次谐波,通过计算,确定大气烷烃气体浓度。根据气体采样时间、实时风速及车速,计算得到系统的响应时间为82.5 s,实验测量为85~95 s,与理论一致。对系统噪声水平进行测试,实验室中甲烷浓度波动为±40 nL/L,乙烷波动为±2 nL/L,车载过程甲烷浓度波动为+40至-80 nL/L,乙烷波动为±4 nL/L。为验证传感器性能,与美国Aeries公司的商用传感器结果做了对比,二者呈现较好的一致性。最后,给出了车载传感器系统在某条线路上的甲烷、乙烷浓度移动探测结果,以及某小区甲烷、乙烷浓度的二维分布测绘结果,分析了二种烷烃气体的变化关系。本文所开展的工作为探测烷烃气体泄漏并监测大气质量提供了技术保障。
For realizing atmospheric alkane gas detection in a wide area and a long distance
a dual-gas simultaneous methane (CH
4
) and ethane (C
2
H
6
) sensor system was demonstrated. Measurements were conducted in an area. A Continuous-Wave (CW) Interband Cascade Laser (ICL) was used as the light source
a high-speed Data Acquisition card (DAQ) was used to acquire the detection signal
and a LabVIEW based laptop platform was developed for signal generation
signal acquisition
harmonic extraction
concentration calculation
and display. Considering sampling period
local wind speed
and vehicle speed
the calculated response time is 82.5 s
and the measurement time is 85-90 s. The noise level of CH
4
is ±40 nL/L and C
2
H
6
is ±2 nL/L in the laboratory
while CH
4
is from +40 to -80 nL/L and C
2
H
6
is ±4 nL/L in mobile conditions. Furthermore
a good agreement was found between this sensor and a commercial sensor from Aeries
USA. Concentration measurements of CH
4
and C
2
H
6
along a street and a 2-D concentration distribution in one block were shown. The varied relationship between these two kinds of gases was analyzed. This work provides a technique for detecting the leakage of alkane gases and monitoring the atmospheric gases.
BRANDT A R, HEATH G A, COOLEY D. Methane leaks from natural gas systems follow extreme distributions[J]. Environmental Science & Technology, 2016, 50:12512-12520.
BAMBERGER I, STIEGER J, BUCHMANN N, et al.. Spatial variability of methane:Attributing atmospheric concentrations to emissions[J]. Environmental Pollution, 2014, 190:65-74.
SMITH F A, ELLIOTT S, BLAKE D R, et al.. Spatiotemporal variation of methane and other trace hydrocarbon concentrations in the Valley of Mexico[J]. Environmental Science & Policy, 2002, 5(6):449-461.
SIMPSON I J, ROWLAND F S, MEINARDI S, et al.. Influence of biomass burning during recent fluctuations in the slow growth of global tropospheric methane[J]. Geophysical Research Letters, 2006, 33(22):L22808.
XIAO Y, LONGAN J A, JACOB D J, et al.. Global budget of ethane and regional constraints on U.S. sources[J]. Journal of Geophysical Research-Atmospheres, 2008, 113(D21):D21306.
ETIOPE G, CICCIOOO P. Earth's degassing:a missing ethane and propane source[J]. Science, 2009, 323(5913):478.
SIMPSON I, ANDERSEN M, MEINARDI S, et al.. Long-term decline of global atmospheric ethane concentrations and implications for methane[J]. Nature, 2012, 488(7412):490-494.
NICEWONGER M, VEERHULAST K, AYDIN M, et al.. Preindustrial atmospheric ethane levels inferred from polar ice cores:a constraint on the geologic sources of atmospheric ethane and methane[J]. Geophysical Research Letters, 2016, 43(1):214-221.
TASSI F, VENTURI S, CABASSI J, et al.. Volatile organic compounds (VOCs) in soil gases from Solfatara crater (Campi Flegrei, southern Italy):Geogenic source(s) vs. biogeochemical processes[J]. Applied Geochemistry, 2015, 56:37-49.
DONG L, TITTEL F K, LI C, et al.. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing[J]. Optics Express, 2016, 24:A528-A535.
李相贤, 徐亮, 高闽光, 等.分析温室气体及CO 2 碳同位素比值的傅里叶变换红外光谱仪[J].光学 精密工程, 2014, 22(9):2359-2368.
LI X X, XU L, GAO M G, et al.. Fourier transform infrared spectrometer for analyzing greenhouse gas and CO 2 carbon isotope ratio[J]. Opt. Precision Eng., 2014, 22(9):2359-2368.(in Chinese)
王智宏, 张福东, 滕飞, 等.基于近红外波长组合快速检测油页岩含油率[J].光学 精密工程, 2015, 23(2):371-377.
WANG ZH H, ZHANG F D, TENG F, et al.. Fast detection of oil content in oil shale based on near infrared wavelength combination[J]. Opt. Precision Eng., 2015, 23(2):371-377. (in Chinese)
DONG M, ZHENG C, MIAO S, et al.. Development and measurements of a mid-infrared multi-gas sensor system for CO, CO 2 and CH 4 detection[J]. Sensors, 2017, 17(10):2221.
LIU K, MEI J, ZHANG W, et al.. Multi-resonator photoacoustic spectroscopy[J]. Sensors and Actuators B:Chemical, 2017, 251:632-636.
DONG L, LI C, SANCHEZ N P, et al.. Compact CH 4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser[J]. Applied Physics Letters, 2016, 108:011106.
MA Y, HE Y, ZHANG Y, et al.. Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber-amplified diode laser and a 30.72 kHz quartz tuning fork[J]. Applied Physics Letters, 2017, 110:121104.
SANCHEZ N P, ZHENG C, YE W, et al.. Exploratory study of atmospheric methane enhancements derived from natural gas use in the Houston urban area[J]. Atmospheric Environment, 2018, 176:261-273.
0
浏览量
224
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构