浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学 研究生院, 北京 100049
[ "姚东(1985-), 男, 吉林东丰人, 博士研究生, 助理研究员, 2007年、2010年于北京航空航天大学分别获得学士、硕士学位, 主要从事航空遥感和干涉测量方面的研究。E-mail:yd_banrou@sina.com" ]
[ "李钰鹏(1992-), 男, 山东青岛人, 博士研究生, 2011年于青岛科技大学获得学士学位, 主要从事光机结构设计方面的研究。E-mail:liyp0525@126.com" ]
收稿日期:2018-06-18,
录用日期:2018-7-23,
纸质出版日期:2018-08-25
移动端阅览
姚东, 李钰鹏, 赵亚, 等. 适用于光黏工艺的干涉仪公差保证方法[J]. 光学 精密工程, 2018,26(8):1945-1953.
Dong YAO, Yu-peng LI, Ya ZHAO, et al. Tolerance assurance of interferometer for optical HCB process[J]. Optics and precision engineering, 2018, 26(8): 1945-1953.
姚东, 李钰鹏, 赵亚, 等. 适用于光黏工艺的干涉仪公差保证方法[J]. 光学 精密工程, 2018,26(8):1945-1953. DOI: 10.3788/OPE.20182608.1945.
Dong YAO, Yu-peng LI, Ya ZHAO, et al. Tolerance assurance of interferometer for optical HCB process[J]. Optics and precision engineering, 2018, 26(8): 1945-1953. DOI: 10.3788/OPE.20182608.1945.
空间干涉测量系统是空间引力波探测的重要组成部分。本文介绍了一种全玻璃材料的差频激光干涉仪的组成结构和工作原理,对差频干涉仪中双相干光束的匹配对准难题,介绍了一种适用于光黏装配工艺的角度公差和位置公差保证方法。这种方法采用了监测系统和微量调整机构相结合的方式,首先,监控系统可以实现光线相对位置的实时测量,给出被调整光线的调整方向和调整量;然后,微量调整机构可以在平面移动和轴向转动3个自由度上,对目标器件实现微米量级的微量调整;监控过程和调整过程反复迭代,可实现对光学元器件的高精度位置控制和角度控制。实验结果表明,在调整方向上角度公差优于80
μ
rad,位置公差优于85
μ
m。本方案基本满足差频激光干涉仪的装配精度需求,为后续更高精度的装配奠定基础。
Space interference measurement system is an important part of gravitational wave detection in space. This paper introduces the composition and working principle of a differential frequency interferometer made of only glass. To address the problem of matching and aligning double coherent beams in differential frequency interferometers
we introduce a method that can guarantee the angular and position tolerance of double frequency laser interferometers; this method is suitable for the hydroxide catalysis bonding assembly process. In the proposed method
an observation system is combined with a microadjustment mechanism. First
the monitoring system measures the relative position of light rays in real time. Next
the microadjustment mechanism adjusts the target device to micron-order resolution along three degrees of freedom
including two-dimensional planar movement and one-dimensional axial rotation. The monitoring and adjustment processes are iterated to achieve high-precision position and angular control of the optical components. Manual adjustments can ensure an angular tolerance and a position tolerance greater than 80
μ
rad and 85
μ
m
respectively. This scheme can meet the accuracy requirements of differential frequency laser interferometers and lay the foundation for achieving higher accuracy in the future.
王智, 沙巍, 陈哲, 等.空间引力波探测望远镜初步设计与分析[J].中国光学, 2018, 11(1):131-151.
WANG ZH, SHA W, CHEN ZH, et al.. Preliminary design and analysis of space gravitational wave detection telescope[J]. Chinese Optics, 2018, 11(1):131-151. (in Chinese)
傅雪.胡文瑞院士和吴岳良院士谈"空间太极计划"[J].科技导报, 2016, 34(3):55-56.
FU X. Academician Hu Wenrui and Academician Wu Yueliang talk about "Space Taiji Plan"[J]. Science and Technology Review, 2016, 34(3):55-56. (in Chinese)
吴岳良, 胡文瑞.中国的引力波探测计划[J].科学世界, 2017(4):1-1.
WU Y L, HU W R. China's gravitational wave detection plan[J].Newton, 2017(4):1-1. (in Chinese)
罗子人, 白姗, 边星, 等.空间激光干涉引力波探测[J].力学进展, 2013, 43(4):415-447.
LUO Z R, BAI SH, BIAN X, et al.. Space laser interference gravitational wave detection[J]. Advances in Mechanics, 2013, 43(4):415-447. (in Chinese)
梅贵, 翟岩, 曲贺盟, 等.离轴三反系统的无应力装调[J].光学 精密工程, 2015, 23(12):3414-3421.
MEI G, ZHAI Y, QU H M, et al.. Stress-free assembly and adjustment of off-axis three-mirror system[J]. Opt. Precision Eng., 2015, 23(12):3414-3421. (in Chinese)
张学敏, 宋兴, 侯晓华, 等.可调焦离轴三反光学系统的装调[J].光学 精密工程, 2017, 25(6):1458-1463.
ZHANG X M, SONG X, HOU X H, et al.. Installation and adjustment of adjustable off-axis three-mirror optical system[J]. Opt. Precision Eng., 2017, 25(6):1458-1463. (in Chinese)
沙巍, 陈长征, 许艳军, 等.离轴三反空间相机主三镜共基准一体化结构[J].光学 精密工程, 2015, 23(6):1612-1619.
SHA W, CHEN CH ZH, XU Y J, et al.. Main three mirrors and common reference integrated structure of off-axis three-mirror space camera[J]. Opt. Precision Eng., 2015, 23(6):1612-1619. (in Chinese)
ELLIFFE E J, BOGENSTAHL J, DESHPANDE A, et al.. Hydroxide-catalysis bonding for stable optical systems for space[J]. Classical & Quantum Gravity, 2005, 22(10):S257-S267.
ROBERTSON D I, FITZSIMONS E D, KILLOW C J, et al.. Construction and testing of the optical bench for LISA pathfinder[J]. Classical and Quantum Gravity, 2013, 30(8):085006.
陈晓峰, 阮海军.氢氧催化粘接技术在光学部件粘接中的应用研究[J].哈尔滨师范大学自然科学学报, 2004, 20(1):59-63.
CHEN X F, RUAN H J. Application of hydrogen-oxygen catalytic bonding technology in optical component bonding[J]. Natural Science Journal of Harbin Normal University, 2004, 20(1):59-63. (in Chinese)
阮海军.低温氢氧催化键合及其特性研究[D].哈尔滨: 哈尔滨工业大学, 2004. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y655115
RUAN H J. Study on Catalytic Bonding of Hydrogen and Oxygen at Low Temperature and its Characteristics [D]. Harbin: Harbin Institute of Technology, 2004. (in Chinese)
骆颖欣.星载激光稳频原理演示系统的研制[D].武汉: 华中科技大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10487-1016088400.htm
LUO Y X. Development of a Demonstration System of Satellite-borne Laser Frequency Stabilization Principle [D]. Wuhan: Huazhong University of Science and Technology, 2016. (in Chinese)
GWO D H. Ultra precision and reliable bonding method: US, US 6284085 B1[P]. 2001.
GWO D H. Hydroxide-catalyzed bonding: US, US 6548176 B1[P]. 2003.
FITZSIMONS E D, BOGENSTAHL J, HOUGH J, et al.. Precision absolute positional measurement of laser beams[J]. Applied Optics, 2013, 52(12):2527-2530.
0
浏览量
280
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构