浏览全部资源
扫码关注微信
河北大学 物理科学与技术学院, 河北 保定 071000
[ "李云(1986-), 女, 河北石家庄人, 博士, 2014年于河北大学获得硕士学位, 现为河北大学物理科学与技术学院光学工程专业博士, 主要从事光电功能材料与器件方面的研究.E-mail:yunli_0317@163.com" ]
[ "路万兵(1980-)男, 河北保定人, 副教授, 硕士生导师, 2005年、2011年于河北大学分别获得硕士、博士学位, 现为河北大学物理科学与技术学院教师, 主要从事光电功能材料与器件的研究.E-mail:wanbinglu@hbu.edu.cn" ]
收稿日期:2017-12-06,
录用日期:2018-2-9,
纸质出版日期:2018-08-25
移动端阅览
李云, 张博惠, 高东泽, 等. 纳米硅氧多层薄膜低温调控及其发光特性[J]. 光学 精密工程, 2018,26(8):1960-1966.
Yun LI, Bo-hui ZHANG, Dong-ze GAO, et al. Low temperature deposition and photoluminescence properties of silicon oxide multilayer films[J]. Optics and precision engineering, 2018, 26(8): 1960-1966.
李云, 张博惠, 高东泽, 等. 纳米硅氧多层薄膜低温调控及其发光特性[J]. 光学 精密工程, 2018,26(8):1960-1966. DOI: 10.3788/OPE.20182608.1960.
Yun LI, Bo-hui ZHANG, Dong-ze GAO, et al. Low temperature deposition and photoluminescence properties of silicon oxide multilayer films[J]. Optics and precision engineering, 2018, 26(8): 1960-1966. DOI: 10.3788/OPE.20182608.1960.
为了研究硅量子点薄膜在太阳电池中的应用,本文采用甚高频等离子体增强化学气相沉积技术,低温制备了镶嵌有纳米晶硅(nc-Si)的纳米硅氧多层(nc-SiOx/a-SiO
x
)薄膜样品。TEM图显示,通过调整nc-SiO
x
层的厚度,实现了薄膜多层结构的低温调控。利用拉曼散射光谱(Raman)、紫外可见透射光谱以及稳/瞬态光致发光(PL)谱等检测手段对薄膜的微观结构、能带特征以及发光特性进行了分析。光吸收谱分析表明,nc-Si粒子尺寸及其a-SiO
x
边界层共同影响薄膜的光学带隙。稳/瞬态PL谱分析表明,多层结构发光表现为一个固定于1.19 eV附近的发光峰和一个随nc-SiO
x
层厚度增加而发生红移的发光峰,其中固定发光峰归因于非晶SiO
x
网络中缺陷发光,发光衰减寿命约在4.6
μ
s,峰位可调的发光峰为nc-Si量子限制效应-缺陷态复合发光,对应两个发光衰减过程,其中慢发光衰减寿命随nc-SiO
x
层厚度增加由9.9
μ
s增加到16.5
μ
s,快发光衰减过程基本保持不变。低温PL谱的温度依赖特性进一步表明,薄膜样品的发光主要表现为nc-Si的量子限制效应发光。
Nc-SiO
x
/a-SiO
x
multilayer films were deposited using very-high-frequency plasma enhanced chemical vapor deposition (VHF-PECVD)
to investigate the application of silicon quantum dots in solar cells. Transmission electron microscopy (TEM) images revealed that a multilayer structure was achieved by adjusting the thickness of the nc-SiO
x
layer at low temperature. Based on Raman scattering
UV-visible transmission
and steady/transient photoluminescence (PL) spectra
the microstructure
energy band
and photoluminescence properties of the films were characterized
respectively. Absorption spectra analysis indicated that the combination of the nc-Si and a-SiO
x
matrices affected the optical band gap of the films. The PL spectra of the multilayer films exhibited two distinct peaks as the thickness of the nc-SiO
x
layer was increased:a peak fixed at 1.19 eV
and another red-shifted peak near 1.45 eV. The fixed PL peak originated from radiative defects in the a-SiO
x
matrix
which corresponds to a PL decay life of approximately 4.6
μ
s. The red-shifted PL peak was attributed to a complex quantum confinement effect-defect state luminescence mechanism. This is related to two PL decay processes including a slow PL decay life
which increased from 9.9 to 16.5
μ
s
and a fast decay life
which was constant. The temperature-dependent PL properties further signified that the origin of the PL of the multilayer films was mainly attributed to quantum confinement effects in nc-Si.
HAO X J, PODHORODECKI A P, SHEN Y S, et al.. Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si-QD/SiO 2 multilayer films[J]. Nanotechnology, 2009, 20(48):485703(1-10).
HAO X J, CHO E C, FLYNN C, et al.. Synthesis and characterization of boron-doped Si quantum dots for all-Si quantum dot tandem solar cells[J]. Solar Energy Materials & Solar Cells, 2009, 93(12):273-279.
WATANABE K, TSUCHIYA R, MINE T, et al.. Enhanced carrier transport by defect passivation in Si/SiO2 nanostructure-based solar cells[J]. Applied Physics Letters, 2012, 101(10):153902(1-3).
HONG S, BAEK I B, KWAK G Y, et al.. Improved electrical properties of silicon quantum dot layers for photovoltaic applications[J]. Solar Energy Materials & Solar Cells, 2016, 150(1):71-75.
莫镜辉, 袁俊宝, 杨培志, 等. Sb掺杂Si 3 N 4 基Si量子点薄膜的制备与结构[J].光子学报, 2018, 47(2):0231003.
MO J H, YUAN J B, YANG P Z, et al.. Preparation and Structural Properties of Sb-doped Si3N4-based Si Quantum Dot Thin Films[J]. Acta Photonica Sinica, 2018, 47(2):0231003.(in Chinese)
KIM S K, CHO C H, KIM B H, et al.. Electrical and optical characteristics of silicon nanocrystal solar cells[J]. Applied Physics Letters, 2009, 95(14):143120(1-3).
CHO E C, PARK S, HAO X J, et al.. Silicon quantum dot/crystalline silicon solar cells[J]. Nanotechnology, 2008, 19(24):245201(1-5).
GODEFROO S, HAYNE M, JIVANESCU M, et al. Classification and control of the origin of photoluminescence from Si nanocrystals[J]. Nature nanotechnology, 2008, 3(3):174-178.
李晓苇, 李云, 郑燕, 等.相变区纳米硅氧薄膜的微观结构及光学特性[J].光学 精密工程, 2017, 25(4):850-856.
LI X W, LI Y, ZHENG Y, et al.. Structural and optical properties of nanocrystalline silicon oxide film near the phase transformation[J]. Opt. Precision Eng., 2017, 25(4):850-856(in Chinese)
GOUADEC G, COLOMBAN P. Raman spectroscopy of nanostructures and nanosized materials[J]. Journal of Raman Spectroscopy, 2007, 38(6):598-603.
KANEMITSU Y. Photoluminescence spectrum and dynamics in oxidized silicon nanocrystals:A nanoscopic disorder system[J]. Physical Review B, 1996, 53(20):13515-13520.
WANG X ZH, YU W, YU X, et al.. Effects of annealing treatments on the photoluminescence decay properties of Si-rich oxide/SiO2 multilayer films[J]. Superlattices and Microstructures, 2013, 60:208-216.
WANG M H, LI D S, YUAN ZH ZH, et al.. Photoluminescence of Si-rich silicon nitride:Defect-related states and silicon nanoclusters[J]. Applied Physics Letters, 2007, 90, 131903(1-3).
VARSHNI Y P. Temperature dependence of the energy gap in semiconductors[J]. Physica, 1967, 34(1):149-154.
0
浏览量
230
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构