浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100039
[ "邵帅(1990-), 男, 吉林长春人, 博士研究生, 2013年于长春理工大学获得学士学位, 主要从事空间遥感图像处理技术方面的研究。E-mail:damond0424@yeah.net" ]
收稿日期:2018-01-12,
录用日期:2018-3-3,
纸质出版日期:2018-08-25
移动端阅览
邵帅, 刘辉, 袁航飞, 等. HSI色彩空间下的低照度遥感图像增强[J]. 光学 精密工程, 2018,26(8):2092-2099.
Shuai SHAO, Hui LIU, Hang-fei YUAN, et al. Low-illumination remote sensing image enhancement in HSI color space[J]. Optics and precision engineering, 2018, 26(8): 2092-2099.
邵帅, 刘辉, 袁航飞, 等. HSI色彩空间下的低照度遥感图像增强[J]. 光学 精密工程, 2018,26(8):2092-2099. DOI: 10.3788/OPE.20182608.2092.
Shuai SHAO, Hui LIU, Hang-fei YUAN, et al. Low-illumination remote sensing image enhancement in HSI color space[J]. Optics and precision engineering, 2018, 26(8): 2092-2099. DOI: 10.3788/OPE.20182608.2092.
为了提高低照度遥感图像的可视性,提出了利用改进的多尺度Retinex算法与局部对比度自适应调整相结合的方法来改善图像质量。首先,把原始图像变换到HSI色彩空间,有效分离H、S、I分量;然后,然后在保持色调分量H不变的前提下,对亮度分量I利用改进的多尺度Retinex算法进行处理,对整幅图像进行亮度和对比度的初步调整,通过使用Sigmoid函数替换多尺度Retinex算法中的对数函数来减少数据丢失;为了使局部细节信息得到更好的改善,在利用改进的多尺度Retinex算法处理后进行自适应局部对比度增强,提高图像局部对比度;对饱和度分量S采用分段线性增强的方法进行处理;最后,将处理后的图像变换回到RGB空间。实验结果表明:图像信息熵由5.79提高至6.65;图像感兴趣区域的局部对比度由0.695提高至0.701,图像质量以及利用价值得到了提升。
In order to improve the visibility of low-illumination remote sensing images
an improved multiscale Retinex combined with a local contrast adaptive adjustment method was proposed. First
the original image was transformed into HSI color space and the hue component H
saturation component S
and brightness component I were effectively separated. The H component was unchanged
and an improved multiscale Retinex algorithm was applied to process the I component
to improve the overall brightness and contrast of the image. In this case
the Sigmoid function was used to replace the logarithm function in the multiscale Retinex algorithm to reduce the loss of image data. In order to improve the local detail information
local contrast adaptive enhancement was performed via image processing. Then the component S was processed by piecewise linear enhancement. Finally
the processed image was transformed to RGB color space. The experimental results indicate that the entropy of the image information is increased from 5.79 to 6.65
and the local contrast of the image interest area increased from 0.695 to 0.701. This indicates that the image quality and the applied value were effectively improved.
JANG J H, KIM S D, RA J B. Enhancement of optical remote sensing images by subband-decomposed multi-scale Retinex with Hybrid Intensity Transfer Function[J]. IEEE, 2011, 8(5):983-987.
赵宏宇, 肖创柏, 禹晶, 等.马尔科夫随机场模型下的Retinex夜间彩色图像增强[J].光学 精密工程, 2014, 22(4): 1048-1055. http://www.eope.net/CN/abstract/abstract15201.shtml
ZHAO H Y, XIAO CH B, YU J, BAI L. A Retinex algorithm for night color image enhancement by MRF[J]. Opt. Precision Eng. , 2014, 22(4): 1048-1055. (in Chinese)
PRATT WK. Digital Image Processing [D]. 2nd ed. NewYork: Wiley, 1991.
JAIN AK. Fundamentals of Digital Image Processing [D]. Englewood Cliffs, NJ: Prentice-Hall, 1989.
LIM JS. Two-Dimensional Signal and Image Processing [D]. Englewood Cliffs, NJ: Prentice-Hall, 1990.
LAND E H, MCCANN J. Lightness and Retinex theory[J]. Journal of Optical Society of America, 1971, 61(1):1-11.
CHANG J L, IRENE CH, YI ZH, et al.. Enhancement of low visibility aerial images using histogram truncation and an explicit Retinex representation for balancing contrast and color consistency[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128:16-26.
JOBSON DJ, RAHMAN Z, WOODELL GA. Properties and performance of a center/surround Retinex[J]. IEEE Trans. Image Process, 1997, 6:451-462.
马忠丽, 文杰.融合边缘信息的单尺度Retinex海雾去除算法[J].计算机辅助设计图形学报, 2015, 27(2):217-225.
MA ZH L, WEN J. A single scale Retinex sea fog removal algorithm with edge information fusion[J]. Journal of Computer-Aided Design and Computer Graphics, 2015, 27(2):217-225. (in Chinese)
BISWAS B, ROY P, CHOUDHURI R, et al.. Microscopic image contrast and brightness enhancement using multi-scale Retinex and Cuckoo Search Algorithm[J]. Procedia Computer Science, 2015, 70:348-354.
JOBSON D J, RAHMAN Z U, WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 1997, 6(7):965-76.
DONG X, WANG G, PANG Y, et al.. Fast efficient algorithm for enhancement of low lighting video[C]// IEEE International Conference on Multimedia and Expo . IEEE, 2011: 1-6.
HE K, SUN J, TANG X. Single Image Haze Removal Using Dark Channel Prior[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(12):2341-2353.
王彦臣, 李树杰, 黄廉卿.基于多尺度Retinex的数字X光图像增强方法研究[J].光学 精密工程, 2006, 14(1):70-76.
WANG Y CH, LI SH J, HUANG L Q. Enhancement of radiography based multiscale retinex[J]. Opt. Precision Eng., 2006, 14(1):70-76. (in Chinese)
葛微, 李桂菊, 程宇奇, 等.利用改进的Retinex进行人脸图像光照处理[J].光学 精密工程, 2010, 18(4):1011-1020.
GE W, LI G J, CHENG Y Q, et al.. Face image illumination processing based on improved Retinex[J]. Opt. Precision Eng., 2010, 18(4):1011-1020. (in Chinese)
陈博洋.彩色遥感图像的亮度直方图局部线性化增强[J].光学 精密工程, 2017, 25(2):502-508.
CHEN B Y. Local linear enhancement of luminance histogram of color remote sensing image[J]. Opt. Precision Eng., 2017, 25(2):502-508. (in Chinese)
YIN X, GOUDRIAAN J, LANTINGA E A, et al.. A Flexible Sigmoid Function of Determinate Growth[J]. Annals of Botany, 2003, 91(3):361.
ZHANG H, ZHANG S, YADONG W U, et al.. Fast haze removal algorithm for single image based on human visual characteristics[J]. Journal of Computer Applications, 2014, 34(6):1753-1745.
陈志刚, 尹福昌.基于Contourlet变换的遥感图像增强算法[J].光学 精密工程, 2008, 16(10):2030-2037.
CHEN ZH G, YI F CH. Enhancement of remote sensing image based on Contourlet transform[J]. Opt. Precision Eng., 2008, 16(10):2030-2037. (in Chinese)
0
浏览量
217
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构