浏览全部资源
扫码关注微信
河北工业大学 计算机科学与软件学院, 天津 300401
[ "刘教民(1958-), 男, 河南西峡人, 博士, 教授, 博士生导师, 1998年于河北工业大学获得博士学位, 主要从事计算机智能控制、多媒体技术方面的研究。E-mail:lmj6667@126.com" ]
[ "师硕(1981-), 女, 河北易县人, 博士, 讲师, 2006年于东北大学获得硕士学位, 2014年于河北工业大学获得博士学位, 现为河北工业大学计算机科学与软件学院计算机系教师, 主要从事数字图像处理、模式识别等方面的研究。E-mail:shishuo@scse.hebut.edu.cn" ]
收稿日期:2017-12-06,
录用日期:2018-2-20,
纸质出版日期:2018-08-25
移动端阅览
刘教民, 郭剑威, 师硕. 自适应模板更新和目标重定位的相关滤波器跟踪[J]. 光学 精密工程, 2018,26(8):2100-2111.
Jiao-min LIU, Jian-wei GUO, Shuo SHI. Correlation filter tracking based on adaptive learning rate and location refiner[J]. Optics and precision engineering, 2018, 26(8): 2100-2111.
刘教民, 郭剑威, 师硕. 自适应模板更新和目标重定位的相关滤波器跟踪[J]. 光学 精密工程, 2018,26(8):2100-2111. DOI: 10.3788/OPE.20182608.2100.
Jiao-min LIU, Jian-wei GUO, Shuo SHI. Correlation filter tracking based on adaptive learning rate and location refiner[J]. Optics and precision engineering, 2018, 26(8): 2100-2111. DOI: 10.3788/OPE.20182608.2100.
针对核相关滤波器在跟踪中因目标快速运动导致的目标易丢失和部分遮挡问题,本文在多特征尺度自适应核相关滤波器(Scale Adaptive with Multiple Features tracker,SAMF)基础上,提出一种融合自适应模板更新和预测目标位置重定位的核相关跟踪算法。采用联合目标移动速度和特征变化的模板更新机制增大对目标快速运动适应性,根据长时滤波器和短时滤波器协作跟踪提出目标位置修正和重定位模型提升跟踪器应对目标部分遮挡的能力。在OTB-2015视频序列集100组序列中与序列集提供的算法进行对比,本算法跟踪精度相比SAMF提升2%。在目标发生快速移动时本文算法具有更好的追踪目标能力,目标重定位也很好地解决了目标部分遮挡问题。
To overcome the problem of loss of target caused by fast motion and the issue of partial occlusion in the tracking of kernel correlation filters
this paper proposed a new kernel correlation tracking algorithm that combines adaptive template updating and the prediction of the relocation of a target
based on the scale adaptive with multiple features tracker (SAMF). A template updating mechanism that combines target velocity and feature changes was proposed to improve the adaptability to fast movement of the target. Based on cooperative tracking of long time and short time filters
a target position correction and relocation model was proposed to improve the ability of the tracker to cope with partial occlusion of the target. In 100 sequences of OTB-2015 video set
the proposed algorithm was compared with the algorithms based on sequence sets and the SAMF algorithm. The tracking accuracy of the proposed algorithm is 2% higher than that of the SAMF algorithm
and the success rate is increased by 1%. The proposed algorithm has better tracking ability for fast moving targets and the target relocation scheme effectively addresses the problem of partial occlusion of the target.
WU Y, LIM J, YANG M H. Online Object Tracking: A Benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society , 2013: 2411-2418.
WU Y, LIM J, YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(9):1834-48.
KRISTAN M, PFLUGFELDER R, MATAS J, et al.. The visual object tracking VOT2015 challenge results[C]. IEEE International Conference on Computer Vision Workshop. IEEE , 2016: 564-586.
BOLME D S, BEVERIDGE J R, DRAPER B A, et al.. Visual object tracking using adaptive correlation filters[C]. Computer Vision and Pattern Recognition. IEEE , 2010: 2544-2550.
RUI C, MARTINS P, BATISTA J. Exploiting the circulant structure of tracking-by-detection with kernels[C]. European Conference on Computer Vision. Springer , Berlin , Heidelberg , 2012: 702-715.
DANELLJAN M, KHAN F S, FELSBERG M, et al.. Adaptive color attributes for real-time visual tracking[C]. Computer Vision and Pattern Recognition. IEEE , 2014: 1090-1097.
WEIJER J V D, SCHMID C, VERBEEK J, et al.. Learning color names for real-world applications[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2009, 18(7):1512-1523.
HENRIQUES J F, RUI C, MARTINS P, et al.. High-Speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(3):583-596.
FOIRSYTH D. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 47(2):6-7.
DANELLJAN M, HAGER G, KHAN F S, et al.. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016, PP(99):1-1.
LI Y, ZHU J. A scale adaptive kernel correlation filter tracker with feature integration[J]. 2014, 8926:254-265.
LI Y, ZHU J, HOI S C H. Reliable Patch Trackers: Robust visual tracking by exploiting reliable patches[C]. Computer Vision and Pattern Recognition. IEEE , 2015: 353-361.
魏全禄, 老松杨, 白亮.基于相关滤波器的视觉目标跟踪综述[J].计算机科学, 2016, 43(11):1-5.
WEI Q L, LAO S Y, BAI L. Visual object tracking based on correlation filters:A Survey[J].Computer science, 2016, 43(11):1-5.(in Chinese)
张雷, 王延杰, 孙宏海, 等.采用核相关滤波器的自适应尺度目标跟踪[J].光学 精密工程, 2016, 24(2):448-459.
ZHANG L, WANG Y J, SUN H H, et al.. Adaptive scale object tracking with kernelized correlation filters[J]. Opt. Precision Eng., 2016, 24(2):448-459.(in Chinese)
王春平, 王暐, 刘江义, 等.基于色度饱和度-角度梯度直方图特征的尺度自适应核相关滤波跟踪[J].光学 精密工程, 2016, 24(9):2293-2301.
WANG CH P, WANG W, LIU J Y, et al.. Scale adaptive kernelized correlation filter tracking based on HHS-OG feature[J]. Opt. Precision Eng., 2016, 24(9):2293-2301.(in Chinses)
王暐, 王春平, 李军, 等.特征融合和模型自适应更新相结合的相关滤波目标跟踪[J].光学 精密工程, 2016, 24(8):2059-2066.
WANG W, WANG CH P, LI J, et al.. Correlation filter tracking based on feature fusing and model adaptive updating[J]. Opt. Precision Eng., 2016, 24(8):2059-2066.(in Chinese)
GRAY R M. Toeplitz and circulant matrices : a review [M]. Now Publishers Inc. 2005.
ASHA C S, NARASIMHADHAN A V. Adaptive learning rate for visual tracking using correlation filters[J]. Procedia Computer Science, 2016, 89:614-622.
MA C, YANG X, ZHANG C, et al.. Long-term correlation tracking[C]. Computer Vision and Pattern Recognition. IEEE , 2015: 5388-5396.
HARE S, SAFFARI A, TORR P H S. Struck: Structured output tracking with kernels[C]. International Conference on Computer Vision. IEEE Trans Pattern Anal Mach Intell , 2011: 263-270.
KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking learning detection.[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(7):1409-22.
DINH T B, VO N, MEDIONI G. Context tracker: Exploring supporters and distracters in unconstrained environments[C]. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society , 2011: 1177-1184.
LIU B, HUANG J, YANG L, et al.. Robust tracking using local sparse appearance model and K-selection[C]. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society , 2011: 1313-1320.
0
浏览量
281
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构