浏览全部资源
扫码关注微信
中国工程物理研究院 总体工程研究所, 四川 绵阳 621999
[ "范敬辉(1971-), 女, 黑龙江黑河人, 高级工程师, 1994年于哈尔滨电工学院获得学士学位, 主要从事光电子元器件封装材料制备及应用的研究。E-mail:fanjh@caep.cn" ]
[ "吴菊英(1969-), 女, 四川泸州人, 高级工程师, 1993年、2000年于四川大学分别获得学士、硕士学位, 主要从事聚合物合成及表征的研究。E-mail:wujy@caep.cn" ]
收稿日期:2018-05-24,
录用日期:2018-6-29,
纸质出版日期:2018-09-25
移动端阅览
范敬辉, 吴菊英, 马艳. 补强型透明电子灌封胶的制备及性能[J]. 光学 精密工程, 2018,26(9):2169-2173.
Jing-hui FAN, Ju-ying WU, Yan MA. Preparation and properties of reinforced transparent electronic encapsulant[J]. Optics and precision engineering, 2018, 26(9): 2169-2173.
范敬辉, 吴菊英, 马艳. 补强型透明电子灌封胶的制备及性能[J]. 光学 精密工程, 2018,26(9):2169-2173. DOI: 10.3788/OPE.20182609.2169.
Jing-hui FAN, Ju-ying WU, Yan MA. Preparation and properties of reinforced transparent electronic encapsulant[J]. Optics and precision engineering, 2018, 26(9): 2169-2173. DOI: 10.3788/OPE.20182609.2169.
为了改善透明电子灌封胶的力学性能,采用加成反应制备了补强型室温固化透明电子灌封胶。首先,通过开环聚合制备乙烯基封端的聚硅氧烷;以硅氢基封端的聚硅氧烷为交联剂,在铂配合物的催化作用下,制备得到可室温固化的透明型灌封基胶。采用MQ硅树脂对基胶进行补强,研究了MQ硅树脂的含量对灌封胶透光性、力学和绝缘性能的影响。结果表明,MQ硅树脂在含量15份时,补强型灌封胶的可见光透过率、电阻率、拉伸强度分别达到84%、2.77×10
14
Ω·cm、5.2 MPa;MQ硅树脂的适量加入有效提高了灌封胶的力学性能;试样在热老化和湿热老化之后仍保持优良的光学、力学和绝缘性能。
To improve the mechanical property of transparent electronic encapsulant
reinforced transparent electronic encapsulant was obtained by additional method at room temperature. Firstly
vinyl-terminated polysiloxane was synthesized by ring-opening polymerization. Using Si-H-terminated polysiloxane as crosslinking agent and platinum complexes as catalyst
the transparent gum that cured at room temperature was prepared and subsequently reinforced by filling in MQ silicone resin. The influence of the amount of MQ silicone resin on the transmittance
mechanics
and insulation performance of the encapsulant was studied. The results indicate that the tensile strength
transmittance
and resistivity of the encapsulant reach 5.2 MPa
84%
and 2.77×10
14
Ω·cm
respectively
when the MQ silicone resin content is 15 phr; the mechanics performance is markedly improved when a suitable quantity of MQ silicone resin is filled in; the mechanics
transmittance
and insulation performance of the encapsulant is excellent after thermal aging
damp and thermal aging.
JIAO M, CHEN X W, RUAN ZH Y. Numerical analysis on potting protection of electronic components in projectile[J]. Acta Armamentarii, 2014, 35(S2):51-56.
ZHANG K, FAN J H, MA Y. Study on operation technologies of anti-impact encapsulating materials used for precision electron parts and components[J]. Modern Electronics Technique, 2012, 35(22):192-194.
QING SH G, ZH H R, WANG R K. Preparation and properties of high transmittance silicone pouring sealant for electronic component[J]. Insulating Materials, 2014, 47(5):41-44.
GONG S, TODD M, LOCTITE H. Effects of flexibilizer on the properties of liquid microelectronic encapsulation materials[C]. Proceedings of SPIE-The International Society for Opti-cal Engineering , 2002: 239-244.
DUPUIS R D, KRAMES M R. History, development, and applications of high-brightness visible light-emitting diodes[J]. Journal of Lightwave Technology, 2008, 26(9):1154-1171.
ZHANG Y, YANG X, ZHAO X. Synthesis and properties of optically clear silicone resin/epoxy resin hybrids[J]. Polymer International, 2012, 61(2):294-300.
XU T, YAN L, MIAO J, et al.. Unlocking the potential of diketopyrrolopyrrole-based solar cells by a pre-solvent annealing method in all-solution processing[J]. RSC Adv., 2016, 6:53587-53595.
XU T, YANG M, LIU J, et al.. Wide color-range tunable and low roll-off fluorescent organic light emitting devices based on double undoped ultrathin emitters[J]. Organic Electronics, 2016, 37:93-99.
XU T, ZHANG Y X, WANG B, et al.. Highly simplified reddish orange phosphorescent organic light-emitting diodes incorporating a novel carrier-and exciton-confining spiro-exciplex-forming host for reduced efficiency roll-off[J]. ACS Appl. Mater. Interfaces, 2017, 9(3):2701-2710.
XU T, ZHOU J G, HUANG C C, et al.. Highly simplified tandem organic light-emitting devices incorporating a green phosphorescence ultrathin emitter within a novel interface exciplex for high efficiency[J]. ACS Appl. Mater. Interfaces, 2017, 9(12):10955-10962.
JIANG S D, BAI Z M, TANG G. Fabrication and characterization of graphene oxide-reinforced poly(vinylalcohol)-based hybrid composites by the sol-gel method[J].Composites Science and Technology, 2014, 102(4):51-58.
LI Y, ZH M, LI G. Preparation and performance of silicone materials for LED encapsulation[J]. Polymer Materials Science and Engineering, 2015, 31(1):41-46.
CH J H, LI G Y, HU X S. Preparation and properties of room temperature vulcanizing silicone encapsulant with thermal conductivity and flame retardance[J]. Materials Reviews, 2011, 25(4):1-5.
DI M W, HE S Y, LI R Q, et al.. Radiation effect of 150 keV protons on methyl silicone rubber reinforced with MQ silicone resin[J]. Nuclear Instruments and Methods in Physics Research.B. Beam Interactions with Materials and Atoms, 2006, 248(1):31-36.
WANG X X. Effect of MQ silicone resin on property of LTV[J]. Silicone Material, 2001, 15(1):27-29.
ZH P ZH, WANG H T, KAN CH Y. The catalyst for hydrosilation[J]. Silicone Material, 1995, 9(1):1-5.
WANG F F, ZH P H, GAO M Z. Research on the dielectric characteristics of Nano-SiC/silicone rubber composites[J]. Journal of Harbin University of Science and Technology, 2015(3):1-5.
0
浏览量
113
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构