浏览全部资源
扫码关注微信
安徽大学 物理与材料科学学院, 安徽 合肥 230601
[ "刘星(1992-), 男, 湖北孝感人, 硕士研究生, 2015年于武汉科技大学获得学士学位, 主要从事压电振动能量采集技术的研究。E-mail:1255453846@qq.com" ]
收稿日期:2018-05-15,
录用日期:2018-6-29,
纸质出版日期:2018-09-25
移动端阅览
刘星, 张小舟, 赵海波. 压电阵列径向分布的二维振动能量采集器[J]. 光学 精密工程, 2018,26(9):2181-2189.
Xing LIU, Xiao-zhou ZHANG, Hai-bo ZHAO. Two-dimensional vibration energy harvester with radially distributed piezoelectric array[J]. Optics and precision engineering, 2018, 26(9): 2181-2189.
刘星, 张小舟, 赵海波. 压电阵列径向分布的二维振动能量采集器[J]. 光学 精密工程, 2018,26(9):2181-2189. DOI: 10.3788/OPE.20182609.2181.
Xing LIU, Xiao-zhou ZHANG, Hai-bo ZHAO. Two-dimensional vibration energy harvester with radially distributed piezoelectric array[J]. Optics and precision engineering, 2018, 26(9): 2181-2189. DOI: 10.3788/OPE.20182609.2181.
为了有效采集多个方向的振动能量,本文提出了一种圆柱形的压电阵列径向分布的二维(2D)振动能量采集器。通过将柔性弧形压电阵列径向分布在圆柱体上,该采集器可以收集到二维(2D)平面内任意方向的振动能量。同时,引入了角度带宽来描述采集器获取二维振动能量的能力。实验结果表明:这种新型结构采集器的角度带宽接近180°;而且,通过把对称位置的聚偏二氟乙烯(PVDF)压电元件进行反向串联,采集器的最大输出电压可以达到11.6 V;当把对称位置的聚偏二氟乙烯(PVDF)压电元件反向并联时,最大输出功率达到13.5
μ
W。与传统的悬臂式压电振动能量采集器相比,该二维(2D)采集器具有更好的多方向振动能量采集性能。
In order to effectively collect vibration energy from multiple directions
a Piezoelectric Vibration Energy Harvester (PVEH) with a radially distributed piezoelectric array was proposed for scavenging two-dimensional (2D) vibration energy. By employing an arc-shaped piezoelectric array that was radially distributed on a flexible cylinder
the proposed harvester could scavenge vibration energy from various directions in a 2D plane. A novel concept
termed angle bandwidth
has also been introduced for describing the ability of harvesting 2D vibration energy. The obtained experimental results show that the proposed design can achieve a large angle bandwidth of approximately 180°. Furthermore
the maximum output voltage of the PVEH can reach a value of 11.6 V by connecting the symmetric polyvinylidene fluoride (PVDF) elements in series
whereas the maximum output power can attain a value of 13.5
μ
W by connecting the symmetric PVDF elements in parallel. Hence
compared to a traditional cantilever-shaped PVEH
the proposed 2D PVEH possesses superior ability for harvesting multi-directional vibration energy.
李伟, 车录锋, 王跃林.横向电磁式振动能量采集器的设计与制作[J].光学 精密工程, 2013, 21(3):694-700.
LI W, CHE L F, WANG Y L.Design and fabrication of transverse electromagnetic vibration energy harvester[J]. Opt. Precision Eng., 2013, 21(3):694-700.(in Chinese)
WANG P H, TANAKA K, SUGIYAMA S, et al.. A micro electromagnetic low level vibration energy harvester based on MEMS technology[J]. Microsystem Technologies, 2009, 15(6):941-951.
刘颖, 王艳芬, 李刚, 等. MEMS低频压电振动能量采集器[J].光学 精密工程, 2014, 22(9):2476-2482.
LIU Y, WANG Y F, LI G, et al.. MEMS low-frequency piezoelectric vibration energy harvester[J]. Opt. Precision Eng., 2014, 22(9):2476-2482. (in Chinese)
WANG P H, DU H J. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance[J]. Review of Scientific Instruments, 2015, 86(7):1131-1144.
ZHANG Y, WANG T, LUO A, et al.. Micro electrostatic energy harvester with both broad bandwidth and high normalized power density[J]. Applied Energy, 2018, 212:362-371.
TAO K, TANG L H, WU J, et al.. Investigation of multimodal electret-based MEMS energy harvester with impact-induced nonlinearity[J]. Journal of Microelectromechanical Systems, 2018, 27:276-288.
WANG Z L, JIANG T, XU L. Toward the blue energy dream by triboelectric nanogenerator networks[J]. Nano Energy, 2017, 39:9-23.
WANG P H, LIU R Y, WANG ZL, et al.. Complementary electromagnetic-triboelectric active sensor for detecting multiple mechanical triggering[J]. Advanced Functional Materials, 2018:1705808.
樊康旗, 刘朝辉, 王连松, 等.从人体行走中收集能量的鞋上压电俘能器[J].光学 精密工程, 2017, 5(25):1272-1280.
FAN K Q, LIU ZH H, WANG L S, et al.. An on-punch piezoelectric energy harvester that collects energy from a human walk[J]. Opt. Precision Eng., 2017, 5(25):1272-1280. (in Chinese)
BARTON D A W, BURROW S G, CLARE L R. Energy harvesting from vibrations with a nonlinear oscillator[J]. Journal of Vibration and Acoustics, 2009, 132(2):427-436.
刘祥建, 朱莉娅, 陈仁文.两自由度悬臂梁压电发电装置的宽频发电性能[J].光学 精密工程, 2016, 24(7):1669-1676.
LIU X J, ZHU L Y, CHEN R W.Width power generation performance of two-degree-of-freedom cantilever piezoelectric generator[J]. Opt. Precision Eng., 2016, 24(7):1669-1676. (in Chinese)
刘骥, 刘书田, 高仁璟, 等.基于压电悬臂梁的驱动器与传感器性能分析的精确解析模型[J].光学 精密工程, 2018, 2(26):380-387.
LIU J, LIU SH T, GAO R J, et al.. An analytical model for performance analysis of actuators and sensors based on piezoelectric cantilever beams[J]. Opt. Precision Eng., 2018, 2(26):380-387. (in Chinese)
ANDò B, BAGLIO S, MAIORCA F, et al.. Analysis of two dimensional, wide-band, bistable vibration energy harvester[J]. Sensors and Actuators A Physical, 2013, 202(11):176-182.
YANG Y W, WU H, SOH C K. Experiment and modeling of a two-dimensional piezoelectric energy harvester[J]. Smart Materials and Structures, 2015, 24(12):125011.
刘祥建, 陈仁文, 侯志伟.蒲公英状压电振动能量收集装置宽频带设计[J].光学 精密工程, 2014, 22(7):1850-1856.
LIU X J, CHEN R W, HOU ZH W.Dandelion-shaped piezoelectric vibration energy harvesting device broadband design[J]. Opt. Precision Eng., 2014, 22(7):1850-1856. (in Chinese)
JUNG H J, SONG Y, HONG S K, et al.. Design and optimization of piezoelectric impact-based micro wind energy harvester for wireless sensor network[J]. Sensors and Actuators A Physical, 2015, 222:314-321.
MEHDIZADEH S N, GANJI B A. Design and simulation of small size MEMS bimaterial cantilever solar cell using piezoelectric layer[J]. Microsystem Technologies, 2017, 23(12):1-6.
0
浏览量
197
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构