浏览全部资源
扫码关注微信
浙江大学 光电科学与工程学院 现代光学仪器国家重点实验室, 浙江 杭州 310027
[ "章海军(1965-), 男, 浙江新昌人, 教授, 博士生导师, 1993年于浙江大学获得博士学位, 主要从事光学工程及原子力显微镜技术的研究。E-mail:zhanghj@zju.edu.cn" ]
[ "陈佳骏(1994-), 男, 浙江东阳人, 硕士研究生, 2016年于浙江大学获得学士学位, 主要从事原子力显微镜技术及系统的研究。E-mail:21630060@zju.edu.cn" ]
收稿日期:2018-02-05,
录用日期:2018-3-14,
纸质出版日期:2018-09-25
移动端阅览
章海军, 陈佳骏, 王英达, 等. 无线控制式原子力显微镜系统[J]. 光学 精密工程, 2018,26(9):2205-2211.
Hai-jun ZHANG, Jia-jun CHEN, Ying-da WANG, et al. Development of wirelessly controlled atomic force microscope[J]. Optics and precision engineering, 2018, 26(9): 2205-2211.
章海军, 陈佳骏, 王英达, 等. 无线控制式原子力显微镜系统[J]. 光学 精密工程, 2018,26(9):2205-2211. DOI: 10.3788/OPE.20182609.2205.
Hai-jun ZHANG, Jia-jun CHEN, Ying-da WANG, et al. Development of wirelessly controlled atomic force microscope[J]. Optics and precision engineering, 2018, 26(9): 2205-2211. DOI: 10.3788/OPE.20182609.2205.
提出了一种基于嵌入式系统和WiFi无线控制的接触模式原子力显微镜(AFM)系统。该AFM系统直接由迷你型移动电源给扫描与反馈电路及嵌入式系统等供电;嵌入式系统由微型电脑树莓派和微小型AD
&
DA模块构成,通过WiFi与笔记本电脑实现无线数据通信。利用这一方法,成功研发了无线控制式AFM系统,并开展了微纳米样品的扫描成像实验。实验结果表明,该AFM系统的横向分辨率达到纳米量级,纵向分辨率达到0.1 nm,最大扫描范围为3.6
μ
m×3.6
μ
m。该系统的显著特点是无需交流市电供电,无需直流高压电源,也无需与计算机之间的线缆连接,可在约100 m远处通过无线控制的方式实现AFM的扫描成像。这一新型AFM系统,不仅能够在微纳米技术的常规领域得到应用,而且在野外考察、隔离环境、真空条件、气体氛围环境及星际探测等特殊领域具有广阔的应用前景。
This paper proposes a contact mode Atomic Force Microscope (AFM) based on an embedded system and WiFi control. This AFM utilizes a portable power supply to drive the scanning/feedback circuit and an embedded system. The embedded system
which consists of a micro-computer (Raspberry Pi) and a micro AD & DA module
realizes WiFi-based communication with a laptop computer. Using this approach
a wirelessly controlled AFM is developed and experiments are performed using different samples. The results indicate that the horizontal resolution of the AFM is in nanometer order
and vertical resolution is 0.1 nm. Furthermore
the AFM can achieve a maximum scan range of 3.6 m×3.6 m. The advantages of the proposed setup include the circumvention of the need for commercial and high-voltage DC power supplies
and the obviation of a cable connection between the embedded system and the laptop computer. The system is capable of realizing AFM scanning and imaging via wireless control at approximately 100 m away. This AFM can be potentially applied in most micro/nano-technology fields. Moreover
it allows for special applications in outdoor investigations
isolated spaces
vacuum conditions
gas environments
and even interstellar exploration.
ZHANG S, SHAO Y, LIAO H G, et al.. Graphene decorated with PtAu alloy nanoparticles:Facile synthesis and promising application for formic acid oxidation[J]. Chemistry of Materials, 2011, 23(5):1079-1081.
MISKIN C K, YANG W S, HAGES C J, et al.. 9.0% efficient Cu 2 ZnSn(S, Se) 4 solar cells from selenized nanoparticle inks[J]. Progress in Photovoltaics Research & Applications, 2014, 23(5):654-659.
PANKHURST Q, JONES S, DOBSON J. Applications of magnetic nanoparticles in biomedicine:the story so far[J]. Journal of Physics D Applied Physics, 2016, 49(50):501002.
刘媛媛, 熊广, 王杨, 等.多谐振U形缝隙纳米天线设计及吸收特性[J].光学精密工程, 2017, 25(8):2155-2164.
LIU Y Y, XIONG G, WANG Y, et al.. Design of multi resonant U shaped slots nano-antenna and their absorption properties[J]. Opt. Precision Eng., 2017, 25(8):2155-2164. (in Chinese)
BINNIG G, QUATE C F, GERBER C. Atomic force microscope[J].Physical Review Letters, 1986, 56(9):930-933.
周艳, 潘国顺, 史晓磊, 等. LED蓝宝石衬底抛光表面原子台阶形貌及其周期性研究[J].光学精密工程, 2017, 25(1):100-106.
ZHOU Y, PAN G SH, SHI X L, et al.. Atomic step morphology research of LED sapphire substrate polishing surface and its periodicity[J]. Opt. Precision Eng., 2017, 25(1):100-106. (in Chinese)
PEARCE R, VANCSO G J. Real-time imaging of melting and crystallization in poly(ethylene oxide) by atomic force microscopy[J].Polymer, 1998, 39(5):1237-1242.
ALMONTE L, COLCHERO J. True non-contact atomic force microscopy imaging of heterogeneous biological samples in liquids:topography and material contrast[J].Nanoscale, 2017, 9(8):2903-2915.
黄强先, 张蕤, 刘凯, 等.多模态动态原子力显微镜系统[J].光学精密工程, 2017, 25(2):401-407.
HUANG Q X, ZHANG R, LIU K, et al.. Multi-mode dynamic atomic force microscope system[J]. Opt. Precision Eng., 2017, 25(2):401-407. (in Chinese)
张连生. 基于微相关导引的SPM低漂移扫描方法研究[D]. 合肥: 中国科学技术大学, 2015.
ZHANG L SH. Low Drift Scanning Method for SPM Based on Correlation-Steered Strategy [D]. Hefei: University of Science and Technology of China, 2015. (in Chinese)
李敏, 韩立, 林云生, 等.基于DSP的高速原子力显微镜系统[J].电子显微学报, 2007(1):40-43.
LI M, HAN L, LIN Y SH, et al.. A high speed atomic force microscope system based on DSP[J]. Journal of Chinese Electron Microscopy Society, 2007(1):40-43. (in Chinese)
SYKULSKA H, PIKE W T, STAUFER U, et al.. An overview of OM and AFM data acquisition by the MECA instrument on phoenixm[J]. Lpi Contributions, 2009, 1505:21-22.
SHIBATA M, WATANABE H, UCHIHASHI T, et al.. High-speed atomic force microscopy imaging of live mammalian cells[J]. Biophysics and Physicobiology, 2017, 14:127-135.
杨光. 基于ARM的扫描探针显微镜系统的研究[D]. 长春: 长春理工大学, 2016.
YANG G. Study of Scanning Probe Microscope System Based on ARM [D]. Changchun: Changchun University of Science and Technology, 2016. (in Chinese)
0
浏览量
177
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构