浏览全部资源
扫码关注微信
安徽大学 物理与材料科学学院, 安徽 合肥 230601
[ "张小舟(1994-), 男, 安徽六安人, 硕士研究生, 2016年于安庆师范大学获得学士学位, 主要从事ZnO压电薄膜制备方面的研究。E-mail:1348226219@qq.com" ]
收稿日期:2018-05-15,
录用日期:2018-6-29,
纸质出版日期:2018-09-25
移动端阅览
张小舟, 刘星, 夏艳平, 等. 电化学沉积法制备ZnO柔性纳米发电机[J]. 光学 精密工程, 2018,26(9):2222-2228.
Xiao-zhou ZHANG, Xing LIU, Yan-ping XIA, et al. Fabrication of ZnO flexible nanogenerator by electrodeposition[J]. Optics and precision engineering, 2018, 26(9): 2222-2228.
张小舟, 刘星, 夏艳平, 等. 电化学沉积法制备ZnO柔性纳米发电机[J]. 光学 精密工程, 2018,26(9):2222-2228. DOI: 10.3788/OPE.20182609.2222.
Xiao-zhou ZHANG, Xing LIU, Yan-ping XIA, et al. Fabrication of ZnO flexible nanogenerator by electrodeposition[J]. Optics and precision engineering, 2018, 26(9): 2222-2228. DOI: 10.3788/OPE.20182609.2222.
本文利用电化学沉积法在PET-ITO柔性基底上成功制备出ZnO纳米发电机。采用X射线衍射仪,扫描电子显微镜和电化学工作站对ZnO纳米棒进行了生长观察和性能测试。XRD图谱显示,在不同沉积时间下ZnO纳米棒都具有(002)峰的择优取向。SEM表面形貌图显示,电沉积时间为2 h时ZnO纳米棒呈现明显的六角纤锌矿结构。SEM断面图表明,电化学沉积2 h的纳米棒最长为1.1
μ
m。为了更好地观察不同沉积时间对纳米发电机的性能影响,在沉积时间为1,1.5,2 h的条件下制备了3种纳米发电机。最终结果显示,电沉积时间2 h制备的纳米发电机的电压输出性能最好,输出电压为960 mV。最后,研究了电沉积法制作纳米发电机的工作机制。
In the present study
ZnO nanogenerators were fabricated on PET-ITO flexible substrates by electrochemical deposition. The ZnO nanorods were examined using an X-ray diffractometer
a scanning electron microscope
and an electrochemical workstation. The results show that the ZnO nanorods exhibit a preferred orientation of the (002) peak that varies with the deposition time. SEM images show that the ZnO nanorods that were electrodeposited in under 2 h exhibit a significant hexagonal wurtzite structure. SEM cross-sectional images of these ZnO nanorods show that they have a length of up to 1.1
μ
m. To better observe the piezoelectric properties of nano-generators for which the ZnO nanorods were deposited over different durations
three different types of nano-generator were prepared. The results show that the nanogenerator with the ZnO nanorods that were deposited in under 2 h has an output voltage of 960 mV. In addition
this paper explains the working mechanism of a nano-generator prepared using the electrodeposition method.
BAGNALL D M, CHEN Y F, ZHU Z, et al.. Optically pumped lasing of ZnO at room temperature[J]. Applied Physics Letters, 1997, 70(17):2230-2232.
汤洋, 郭逦达, 张增光, 等.硝酸铵诱导电沉积氧化锌纳米柱的铝掺杂及光学性质操控[J].光学精密工程, 2015, 23(5):1288-1296.
TANG Y, GUO Y D, ZHANG Z G, et al.. Aluminum doping and optical manipulation of zinc oxide nanorod induced electrodeposited ZnO nanorods[J]. Opt. Precision Eng., 2015, 23(5):1288-1296. (in Chinese)
WANG P, DU H, SHEN S, et al.. Deposition, characterization and optimization of zinc oxide thin film for piezoelectric cantilevers[J]. Applied Surface Science, 2012, 258(24):9510-9517.
ELFRINK R, KAMEL T M, GOEDBLOED M, et al.. Vibration energy harvesting with aluminum nitride-based piezoelectric devices[J]. Journal of Micromechanics and Microengineering, 2009, 19(9):094005.
JANPHUANG P, LOCKHART R, UFFER N, et al.. Vibrational piezoelectric energy harvesters based on thinned bulk PZT sheets fabricated at the wafer level[J]. Sensors and Actuators A Physical, 2014, 210(1):1-9.
YANG W, HAN W, GAO H, et al.. Self-powered implantable electronic-skin for in situ analysis of urea/uric-acid in body fluids and the potential applications in real-time kidney-disease diagnosis[J]. Nanoscale, 2018, 10(4):2099-2017.
SHEWALE P S, LEE S H, YU Y S. UV sensitive pulsed laser deposited ZnO thin films:Influence of growth temperature[J]. Journal of Alloys and Compounds, 2018:744:849-858.
MAHDHI H, ALAYA S, GAUFFIER J L, et al.. Influence of thickness on the structural, optical and electrical properties of Ga-doped ZnO thin films deposited by sputtering magnetron[J]. Journal of Alloys and Compounds, 2017, 695:697-703.
ISMAIL A H, ABDULLAH A H, SULAIMAN Y. Physical and electrochemical properties of ZnO films fabricated from highly cathodic electrodeposition potentials[J]. Superlattices and Microstructures, 2017, 103:171-179.
周剑, 何兴理, 金浩, 等.基于ZnO压电薄膜的柔性声表面波器件[J].光学精密工程, 2014, 22(2):346-350.
ZHOU J, HE X L, JIN H, et al.. Flexible surface acoustic wave device based on ZnO piezoelectric thin films[J]. Opt. Precision Eng., 2014, 22(2):346-350. (in Chinese)
郑高峰, 何广奇, 刘海燕, 等.电纺氧化锌纳米纤维乙醇、丙酮气敏传感器[J].光学精密工程, 2014, 22(6):1555-1561.
ZHENG G F, HE G Q, LIU H Y, et al.. Electrospinning of zinc oxide nanofibers ethanol and acetone gas sensing sensors[J]. Opt. Precision Eng., 2014, 22(6):1555-1561. (in Chinese)
周剑, 吴学忠, 肖定邦, 等.柔性声表面波器件的波模式分析[J].光学精密工程, 2016, 24(6):1328-1334.
ZHOU J, WU X ZH, XIAO D B, et al.. Wave mode analysis of flexible SAW devices[J]. Opt. Precision Eng., 2016, 24(6):1328-1334. (in Chinese)
刘成有, 宁丹, ZHANG B P, 等. ZnO薄膜非线性光学特性的实验研究[J].光学精密工程, 2005, 13(3):265-271.
LIU CH Y, NING D, ZHANG B P, et al.. Experimental research on nonlinear optical properties of ZnO thin films[J]. Opt. Precision Eng., 2005, 13(3):265-271. (in Chinese)
陈国炜, 朱荣.基于氧化锌纳米线的硅谐振式加速度计[J].光学精密工程, 2009, 17(6):1279-1285.
CHEN G W, ZHU R. Silicon resonant accelerometer based on zinc oxide nanowires[J]. Opt. Precision Eng., 2009, 17(6):1279-1285. (in Chinese)
DENG W, JIN L, CHEN Y, et al.. An enhanced low-frequency vibration ZnO nanorod-based tuning fork piezoelectric nanogenerator[J]. Nanoscale, 2018, 10(2):843-847.
LIU K, SAKURAI M, AONO M. Pinecone-shaped ZnO nanostructures:Growth, optical and gas sensor properties[J]. Sensors and Actuators B Chemical, 2011, 157(1):98-102.
HAGINO S, YOSHIO K, YAMAZAKI T, et al.. Electronic ferroelectricity in ZnO[J]. Ferroelectrics, 2001, 264(1):235-240.
GONG Z, ZHANG M, YAO G, et al.. Effect of electrodeposition time on microstructure, Wettability and optical properties of ZnO Nanorod Arrays[J]. Journal of the Electrochemical Society, 2016, 163(10):E328-E332.
HU Y, ZHANG Y, XU C, et al.. Self-powered system with wireless data transmission[J]. Nano Letters, 2011, 11(6):2572-2577.
GUPTA M K, KIM S W, KUMAR B. Flexible high performance lead-free Na 0 .47K 0.47 Li 0.06 NbO 3 microcubes-structures based piezoelectric energy harvester[J]. Acs Applied Materials & Interfaces, 2016, 8(3):1766-1773.
FAN F R, TANG W, WANG Z L. Flexible nanogenerators for energy harvesting and self-powered electronics[J]. Advanced Materials, 2016, 28(22):4283-4305.
NAGARAJU G, KO Y H, YU J S. Effect of diameter and height of electrochemically-deposited ZnO nanorod arrays on the performance of piezoelectric nanogenerators[J]. Materials Chemistry and Physics, 2015, 149:393-399.
0
浏览量
247
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构