浏览全部资源
扫码关注微信
1.西南科技大学 信息工程学院, 四川 绵阳 621010
2.中国工程物理研究院 电子工程研究所, 四川 绵阳 621999
3.中国科学院 高能物理研究所 核探测与核电子学国家重点实验室, 北京 100049
[ "韩超(1993-), 男, 重庆万州人, 主要从事微电子机械系统(MEMS)及其应用的研究。E-mail:hanchao54@qq.com" ]
收稿日期:2018-05-18,
录用日期:2018-7-2,
纸质出版日期:2018-09-25
移动端阅览
韩超, 张大鹏. 高功率体声波谐振器的自热效应及其修正[J]. 光学 精密工程, 2018,26(9):2229-2235.
Chao HAN, Da-peng ZHANG. Self-heating effect and its modification of high power bulk acoustic-wave resonators[J]. Optics and precision engineering, 2018, 26(9): 2229-2235.
韩超, 张大鹏. 高功率体声波谐振器的自热效应及其修正[J]. 光学 精密工程, 2018,26(9):2229-2235. DOI: 10.3788/OPE.20182609.2229.
Chao HAN, Da-peng ZHANG. Self-heating effect and its modification of high power bulk acoustic-wave resonators[J]. Optics and precision engineering, 2018, 26(9): 2229-2235. DOI: 10.3788/OPE.20182609.2229.
为了在高功率体声波谐振器的设计中考虑自热效应的影响,提出一种声-电磁-热多物理场协同仿真方法,来模拟自热导致的频率偏移,并针对此频率偏移的消除问题,提出了相应的修正方案。首先,由常用的Mason模型设计出满足谐振频率要求的初始谐振器。接着,通过声-电磁-热多物理场协同仿真得到自热导致的频率偏移。然后,初步调整压电层厚度,来抵消此频率偏移。最后,对调整后的谐振器迭代进行声-电磁-热多物理场协同仿真,以确定压电层厚度的调整量。结果表明:自热效应会导致高功率体声波谐振器的谐振频率明显下偏(谐振器案例的频率偏移量为3 MHz),通过减薄压电层厚度(案例中为1.7 nm)可彻底消除此频率偏移。所提出的高功率体声波谐振器的修正方案能有效地解决自热效应导致的谐振频率偏移问题。
In order to study self-heating effects in the design of high-power bulk acoustic-wave resonators
an acoustic electromagnetic thermal multiphysics co-simulation method was proposed to simulate frequency shifts caused by self-heating. A corresponding design modification scheme was proposed to eliminate these frequency shifts. First
an initial resonator that satisfies the resonant frequency requirement was designed from the commonly used Mason model. Then
the frequency shifts caused by self-heating were obtained through acoustic electromagnetic thermal multiphysics co-simulation. Next
the frequency shifts were eliminated by adjusting the preliminary thickness of the piezo-layer. Finally
the acoustic electromagnetic thermal multiphysics co-simulation was performed iteratively on the adjusted resonator to determine the final thickness adjustment of the piezo-layer. The results show that the self-heating effect causes the resonant frequency of the high-power bulk acoustic-wave resonator to shift downward significantly (the frequency shift of the resonator case was 3 MHz)
and this frequency shift can be completely eliminated by reducing the thickness of the piezo-layer (1.7 nm for the resonator case). The proposed scheme for design modification of high-power bulk acoustic-wave resonators can effectively solve the problem of frequency shifts resulting from self-heating.
AIGNER R. SAW and BAW technologies for RF filter applications: A review of the relative strengths and weaknesses[C]. Proceedings of the IEEE Ultrasonics Symposium , 2008: 582-589.
RUBY R. Review and comparison of bulk acoustic wave FBAR, SMR technology[C]. Proceedings of the IEEE Ultrasonics Symposium , 2007: 1029-1040.
GALIPEAU J, CHANG R E. Design considerations for high power BAW duplexers for base station applications[C]. Proceedings of the IEEE Ultrasonics Symposium , 2015: 1-4.
张慧金, 董树荣, 赵士恒, 等. FBAR滤波器及其组件: CN, CN102111124A[P]. 2011.
ZHANG H J, DONG SH R, ZHAO S H, et al . . FBAR Filter and Its Components : CN, CN102111124A[P]. 2011. (in Chinese)
HEEREN W, FATTINGER M, FATTINGER G, et al . . Impact of thermo-mechanical stress on the TCF of WLP BAW filters[C]. Proceedings of the IEEE Ultrasonics Symposium , 2016: 1-4.
TAG A, CHAUHAN V, HUCK C, et al.. A method for accurate modeling of BAW filters at high power levels[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63(12):2207-2214.
BI F, BARBER B. Bulk acoustic wave RF technology[J]. IEEE Microwave Magazine, 2008, 9(5):65-80.
IVIRA B, FILLIT R Y, NDAGIJIMANA F, et al.. Self-heating study of bulk acoustic wave resonators under high RF power[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(1):139-147.
HASSINE N B, MERCIER D, RENAUX P, et al . . Self-heating under RF power in BAW SMR and its predictive 1D thermal model[C]. Proceedings of the IEEE Frequency Control Symposium , 2009: 237-240.
TAG A, WEIGEL R, HAGELAUER A, et al . . Influence of temperature distribution on behavior, modeling, and reliability of BAW resonators[C]. Proceedings of the IEEE Reliability Physics Symposium. 2014: 5C. 5. 1-5C. 5. 7.
TAG A, WEIGEL R, HAGELAUER A, et al . . Influence of dissipated power distribution on BAW resonators' behavior[C]. Proceedings of the IEEE Ultrasonics Symposium , 2014: 2627-2630.
THALHAMMER R, AIGNER R. Energy loss mechanisms in SMR-type BAW devices[C]. Proceedings of the IEEE MTT-S International Microwave Symposium Digest , 2005: 4.
TAG A, WEIGEL R, HAGELAUER A, et al . . Determination of temperature coefficients of thin film materials in RF BAW components[C]. Proceedings of the IEEE Microwave Conference , 2015: 402-405.
YANG T, CAO Z, FELD D A. An H2 emissions model for piezoelectric devices exhibiting strong lateral mode resonances[C] Proceedings of the IEEE Ultrasonics Symposium , 2017: 1-7.
金浩. 薄膜体声波谐振器(FBAR)技术的若干问题研究[D]. 杭州: 浙江大学, 2006.
JIN H. Research on Several Problems of Thin Film Bulk Acoustic Resonator (FBAR) Technology [D]. Hangzhou: Zhejiang University, 2006. (in Chinese)
ELLA J, YLILAMMI M. Modelling of ZnO-based BAWs at high signal levels[C]. Proceedings of the IEEE Ultrasonics Symposium , 2002: 985-988.
董树荣, 金浩, 王德苗.薄膜声体波谐振器的电磁场建模与仿真[J].浙江大学学报(工学版), 2006, 40(9):1477-1481.
DONG SH R, JIN H, WANG D M. Electromagnetic analysis of thin film bulk acoustic resonator[J]. Journal of Zhejiang University (Engineering Science), 2006, 40(9):1477-1481. (in Chinese).
IVIRA B, BENECH P, FILLIT R, et al.. Modeling for temperature compensation and temperature characterizations of BAW resonators at GHz frequencies[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2008, 55(2):421-430.
0
浏览量
213
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构