浏览全部资源
扫码关注微信
山东理工大学 电气与电子工程学院, 山东 淄博 255049
[ "王雅静(1971-), 女, 河北承德人, 博士, 副教授, 2003年于山东科技大学获得硕士学位, 2011年于上海理工大学获得博士学位, 主要从事光电精密测试技术方面的研究。E-mail:wangyjing0725@126.com" ]
[ "袁曦(1995-), 男, 山东淄博人, 硕士研究生, 2018年于山东理工大学获得学士学位, 主要从事光电精密测试技术方面的研究。E-mail:940878211@qq.com" ]
[ "申晋(1962-), 男, 山西晋城人, 博士, 教授, 1996年于中国农业大学获得硕士学位, 2004年于上海理工大学获得博士学位, 主要从事光电精密测试技术方面的研究。E-mail:shenjin@sdut.edu.cn" ]
收稿日期:2018-05-28,
录用日期:2018-7-2,
纸质出版日期:2018-09-25
移动端阅览
王雅静, 袁曦, 申晋, 等. 噪声动态光散射数据Tikhonov与截断奇异值正则化反演[J]. 光学 精密工程, 2018,26(9):2269-2279.
Ya-jing WANG, Xi YUAN, Jin SHEN, et al. Inversion of tikhonov and truncated singular value decomposition regularization for noisy dynamic light scattering data[J]. Optics and precision engineering, 2018, 26(9): 2269-2279.
王雅静, 袁曦, 申晋, 等. 噪声动态光散射数据Tikhonov与截断奇异值正则化反演[J]. 光学 精密工程, 2018,26(9):2269-2279. DOI: 10.3788/OPE.20182609.2267.
Ya-jing WANG, Xi YUAN, Jin SHEN, et al. Inversion of tikhonov and truncated singular value decomposition regularization for noisy dynamic light scattering data[J]. Optics and precision engineering, 2018, 26(9): 2269-2279. DOI: 10.3788/OPE.20182609.2267.
Tikhonov与截断奇异(TSVD)正则化是动态光散射数据反演中的两种重要方法,不同的正则化方法会对噪声DLS数据测量结果产生不同的影响。分别采用二阶差分矩阵的Tikhonov与TSVD方法,在6种噪声水平下,对宽窄不同的单峰与双峰分布颗粒进行了反演研究。结果表明:Tikhonov具有较好的光滑性;对于单峰分布颗粒,TSVD峰值误差更小、对于窄分布以及强噪声宽分布颗粒系反演,其抗噪性能更强、反演误差更小;对于双峰分布颗粒,Tikhonov具有较小的反演误差、较强的双峰分辨能力与抗噪声能力;对于窄分布颗粒的反演,一般TSVD峰值误差更小。在同样噪声情况下,Tikhonov与TSVD的双峰分辨力与颗粒的粒径峰值比有关。Tikhonov双峰分辨力较强,能够分辨出峰值比较低的颗粒。对实测200 nm单峰颗粒进行反演,Tikhonov、TSVD的反演峰值误差分别为3%和1.85%,TSVD峰值位置更准确,能够验证模拟数据的结论。
Tikhonov and truncated singular value decomposition regularization (TSVD) are two important methods in the dynamic light-scattering (DLS) data inversion. Different regularization methods will have different effects on the results of noisy measurement data. By using the Tikhonov of second-order differential matrix and TSVD method
the unimodal and bimodal distribution particles with different widths were retrieved under six kinds of noise levels. The results show that Tikhonov had better smoothness
the peak value error of TSVD is smaller for unimodal distribution particles
anti-interference ability is stronger
and the inversion relative error is smaller for a narrow distribution and the strong noise wide distribution particle system. For bimodal distribution particles
Tikhonov has smaller inversion error and higher bimodal peak resolution and anti-interference ability. For the inversion of narrow distributed particles
the peak value error of TSVD is generally smaller. Under the same noise condition
the bimodal peak resolution of Tikhonov and TSVD is related to the peak value ratio of the particle size. Tikhonov has a high bimodal peak resolution
and it can distinguish particles with lower peak value ratio. The measured data are retrieved for unimodal distribution particles of size 200 nm. The inversion peak errors of Tikhonov and TSVD are 3% and 1.85%
respectively. The results verify the conclusion of the simulated data.
杨晖, 郑刚, 张仁杰.用动态光散射时间相干度法测量纳米颗粒粒径[J].光学精密工程, 2011, 19(7):1546-1551.
YANG H, ZHENG G, ZhANG R J. Measurement of nano-particle sizes by variance of temporal coherence of dynamic light scattering[J]. Opt. Precision Eng., 2011, 19(7):1546-1551. (in Chinese)
田慧欣, 彭晓, 朱新军, 等.动态光散射颗粒分布软测量[J].光学精密工程, 2016, 24(11):2814-2820.
TIAN H X, PENG X, ZHU X J, et al.. Soft sensing of particle size distribution in dynamic light scattering measurement[J] Opt. Precision Eng., 2016, 24(11):2814-2820. (in Chinese)
王雅静, 申晋, 郑刚, 等. Tikhonov正则化与多重网格技术相结合的动态光散射反演方法[J].光学精密工程, 2012, 20(5):58-66.
WANG Y J, SHEN J, ZHENG G, et al.. Inversion of dynamic light scattering combining tikhonov regularization with multi-grid technique[J]. Opt. Precision Eng., 2012, 20(5):58-66. (in Chinese)
SHEN J, THOMAS J C, ZHU X J, et al.. Wavelet denoising Experiments in dynamic light scattering[J]. Optics Express, 2011, 19(13):12284-90.
GAO S S, SHEN J, THOMAS J C, et al.. Analysis of noisy Multi-angle dynamic light scattering data[J]. Applied Optics, 2014, 53(26):6001-6007.
喻雷寿, 杨冠玲, 何振江, 等.用于动态光散射颗粒测量的迭代CONTIN算法[J].光电工程, 2006, 33(8):64-69. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GDGC200608013&dbname=CJFD&dbcode=CJFQ
YU L SH, YANG G L, HE ZH J, LI Y F. Iterative CONTIN algorithm for particle sizing in dynamic light scattering[J]. Opto-Electronic Engineering, 2006, 33(8):64-69.(in Chinese).
RUIGANG L, XIA G, WILHELM O. Dynamic light scattering studies on random cross-linking of polystyrene in semi-dilute solution[J]. Polymer, 2006, 47(26):8488-8494.
KARL F, MANFRED S. Pitfalls and novel applications of particle sizing by dynamic light scattering[J]. Biomaterials, 2016, 98:79-91.
PROVENCHER S W, CONTIN:A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations[J].Comput Phy Commun, 1982, 27(3):229-242.
MCWHIRTER J G, PIKE E R. On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind[J].Phys A:Math Gen, 1978, 11(9):1729-1745.
SUN Y F, WALKER J G. Maximum likelihood data inversion for photon correlation spectroscopy[J]. Meas Sci Technol, 2008, 19(11):115302.
MORRISON I D, GRABOWSKI E F. Improved techniques for particle size determination by quasi-elastic light scattering[J]. Langmuir, 1985, 1:496-501.
BUTTGEREIT R, ROTHS T, HONERKAMP J, et al.. Simultaneous regularization method for the determination of radius distributions from experimental multiangle correlation functions[J]. Phys. Rev. E., 2001, 64, 1515-1523.
ZHU X J, SHEN J, LIU W, et al.. Nonnegative least-squares truncated singular value decomposition to particle size distribution inversion from dynamic light scattering data[J]. Applie Optics, 2010, 49(36):6591-6596.
LI L, YU L, YANG K, et al..Angular dependence of multiangle dynamic light scattering for particle size distribution inversion using a self-adapting regularization algorithm[J].Journal of Quantitative Spectroscopy & Radiative Transfer, 2018, 209:91-102.
刘伟, 王雅静, 陈文钢, 等.正则矩阵对双峰分布DLS数据反演的影响[J].中国激光, 2015, 42(9):0908003-1.
LIU W, WANG Y J, CHEN W G, et al.. Influence of the regularization matrix on the inversion of bimodal dynamic light scattering data[J]. Chinese Journal of Lasers, 2015, 42(9):0908003-1. (in Chinese)
LI ZH M, WANG Y J, SHEN J, et al.. The measurement system of nanoparticle size distribution from dynamic light scattering data[J]. Optics and Lasers in Engineering, 2014, 56(5):94-98.
王雅静, 窦智, 申晋, 等. TSVD-Tikhonov正则化多尺度动态光散射反演[J].中国激光, 2017, 44(1):1014003.
WANG Y J, DOU ZH, SHEN J, et al.. Multi-scale dynamic light scattering inversion combined with TSVD and tikhonov regularization[J].Optics and Lasers in Engineering, 2017, 44(1):1014003. (in Chinese)
HANSEN P C. The Use of the L-Curve in the regularization of discrete ill-posed problems[J]. Siam J Sci Comput, 1993, 14:1487-1503.
COLEMAN T F, LI Y. An interior trust region approach for nonlinear minimization subject to bounds[J]. SIAM Journal on Optimization, 1996, 6(2):418-445.
YU A B, STANDISH N.A study of particle size distribution[J]. Powder Technology, 1990, 62(2):101-118.
MIGUEL X J J, FERNANDES N C, SANTOS, MIGUEL A R B. Continuous particle size distribution analysis with dynamic light scattering[J]. Maxamper:A regularization method using the maximum amplitude for the average error and the Lagrange's multipliers method. J. Biochem. Biophys. Methods, 1998, 36:101-117.
黄钰, 申晋, 徐敏, 等.基于核矩阵扩展的动态光散射截断奇异值分解反演[J].光子学报, 2018, 47(7):0729001.
HUANG Y, SHEN J, XU M, et al.. Truncated singular value decomposition inversion based on extended nuclear matrix in dynamic light scattering[J]. Acta Photonica Sinica, 2018, 47(7):0729001.(in Chinese)
王雅静, 申晋, 郑刚, 等.短数据量动态光散射颗粒测量信号去噪方法[J].强激光与粒子束, 2010, 22(6):1388-1392.
WANG Y J, SHEN J, ZHENG G, et al.. Denoising method adapted for dynamic light scattering particle-sizing signals of short data[J].High Power Laser and Particle Beams, 2010, 22(6):1388-1392. (in Chinese)
0
浏览量
145
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构