浏览全部资源
扫码关注微信
西安电子科技大学 机电工程学院, 陕西 西安 710071
[ "韩琪(1977-), 女, 重庆人, 博士研究生, 2006年于西安电子科技大学获得硕士学位, 主要从事柔顺机构、虚拟现实等研究。E-mail:qihan@xidian.edu.cn" ]
收稿日期:2018-02-01,
录用日期:2018-4-16,
纸质出版日期:2018-09-25
移动端阅览
韩琪, 陈贵敏. 基于蒙特卡罗法的MEMS测力计不确定性分析[J]. 光学 精密工程, 2018,26(9):2289-2293.
Qi HAN, Gui-min CHEN. Uncertainty analysis of MEMS force gauges based on Monte Carlo method[J]. Optics and precision engineering, 2018, 26(9): 2289-2293.
韩琪, 陈贵敏. 基于蒙特卡罗法的MEMS测力计不确定性分析[J]. 光学 精密工程, 2018,26(9):2289-2293. DOI: 10.3788/OPE.20182609.2289.
Qi HAN, Gui-min CHEN. Uncertainty analysis of MEMS force gauges based on Monte Carlo method[J]. Optics and precision engineering, 2018, 26(9): 2289-2293. DOI: 10.3788/OPE.20182609.2289.
由于结构尺寸小,微电子机械系统(MEMS)的性能易受到加工工艺过程中各种不确定因素的影响,设计阶段存在着不确定性。本文针对一种典型的MEMS测力计进行不确定性分析,在考虑大挠度变形的条件下,基于完备椭圆积分解给出了测力计的载荷-位移模型,模型结果表明测力计在位移超过30 μm后表现出显著的非线性。基于该模型,综合考虑材料参数和结构尺寸参数的随机性,研究了测力计不确定性分析的蒙特卡罗法,并给出了直接对蒙特卡罗抽样数据实施线性回归获得各参数敏度的计算方法,用于便捷地分析各参数对测力计不确定性的贡献。所得到的结果与文献吻合非常好,验证了该方法的正确性和有效性,并为测力计的鲁棒设计以及工艺改进提供参考。本文给出的系统不确定性分析方法具有通用性强、使用简单等优点,同时避免了对解析模型的依赖,证明其可应用于难以显式表达输入与输出关系的系统的不确定性分析。
Due to their small size
the performances of microelectromechanical systems (MEMS) are susceptible to uncertainties associated with the micro-fabrication processes; thus
it is necessary to consider these uncertainties during the design stage. By conducting an uncertainty analysis of a typical MEMS force gauge
a load-deflection model was first derived based on the comprehensive elliptic integral solution. The model showed that the force gauge exhibits a nonlinear load-deflection relationship when the deflection surpasses 30 μm. Based on the model
the uncertainty of the force gauge was analyzed using the Monte-Carlo method
by considering the variations of the material and dimensional parameters
and the contributions of the parameters to the uncertainty were analyzed using their sensitivities directly obtained from the linear regression of the Monte-Carlo samples. The results agree well with those presented in Ref.[
1
1
]
indicating the correctness and effectiveness of the method. The results could be helpful for the robustness design of the force gauge
and provide guidance for improving the micro-fabrication processes. The uncertainty analysis method presented in this work is versatile
easy to use
and does not rely on analytical models; it can thus be applied to the uncertainty analysis of systems whose input-output relations cannot be explicitly formulated.
WITTWER J W, GOMM T and HOWELL L L. Surface micromachined force gauges:uncertainty and reliability[J]. Journal of Micromechanics and Microengineering, 2002, 12(1):13-20.
步超, 聂伟荣, 徐安达, 等.基于柔性止动的MEMS惯性开关冲击可靠性强化[J].光学精密工程, 2017, 25(1):123-132.
BU CH, NIE W R, XU A D, et al.. Shock reliability enhancement by flexible stop for MEMS inertial switch[J]. Opt. Precision Eng., 2017, 25(1):123-132. (in Chinese)
王玉朝, 余才佳, 田蕊, 等. MEMS谐振器刚度非线性特性及其表征[J].光学精密工程, 2015, 23(11):3114-3120.
WANG Y CH, YU C J, TIAN R, et al.. Characterization and verification of MEMS resonator nonlinearity[J]. Opt. Precision Eng., 2015, 23(11):3114-3120. (in Chinese)
HOWELL L L, RAO S S, MIDHA A. Reliability-based optimal design of a bistable compliant mechanism[J]. ASME Journal of Mechanical Design, 1994, 116:1115-1121.
ATTOH-OKINE N O. Uncertainty analysis in surface micromachined force gauges:convex model approach[J]. Journal of Aerospace Engineering, 2004, 17(1):40-44.
WASSERSTEIN R L, FISHMAN G S. Monte Carlo:Concepts, Algorithms, and Applications[J]. Technometrics, 1997, 39(3):338.
陈宜方. X射线衍射光学部件的制备及其光学性能表征[J].光学精密工程, 2017, 25(11):2779-2795.
CHEN Y F. Fabrication of diffractive X-ray optics and their performance characterization[J]. Opt. Precision Eng., 2017, 25(11):2779-2795. (in Chinese)
孟庆宇, 汪洪源, 王严, 等.大线视场自由曲面离轴三反光学系统设计[J].红外与激光工程, 2016, 45(10):156-163.
MENG Q Y, WANG H Y, WANG Y, et al.. Off-axis three-mirror freeform optical system with large linear field of view[J]. Infrared and Laser Engineering, 2016, 45(10):156-163. (in Chinese)
HOWELL L L. Compliant mechanisms[M]. New York:Wiley, 2001.
ZHANG A, CHEN G. A Comprehensive elliptic integral solution to the large deflection problems of thin beams in compliant mechanisms[J]. ASME Journal of Mechanisms and Robotics, 2013, 5(2):021006.
BISSHOPP K E and DRUCKER D C. Large deflection of cantilever beams[J]. Quarterly Journal of Applied Mathematics, 1945, 3(3):272-275.
SALTELLI A, CHAN K, SCOTT E M. Sensitivity Analysis[M]. New York:Wiley, 2000.
CHEN G, WILCOX D L, HOWELL L L. Fully compliant double tensural tristable micromechanisms (DTTM)[J]. Journal of Micromechanics and Microengineering, 2009, 19(2):025011.
SHARPE W N, TURNER K T, EDWARDS R L. Tensile testing of polysilicon[J]. Experimental Mechanics, 1999, 39(3), 162-170.
KOESTER D A, MAHADEVAN R, HARDY B, et al .. MUMPs TM Design Handbook Revision 6.0[R]. 2001.
0
浏览量
169
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构