浏览全部资源
扫码关注微信
1.河南工业大学 机电工程学院, 河南 郑州 450001
2.哈尔滨工业大学 机电工程学院, 黑龙江 哈尔滨 150001
[ "王星(1982-), 男, 河南平顶山人, 博士, 讲师, 2004年、2009年于河南理工大学分别获得学士、硕士学位, 2014年于哈尔滨工业大学获得博士学位, 主要从事精密与超精密加工技术方面的研究。E-mail:wangxing@haut.edu.cn" ]
[ "张飞虎(1964-), 男, 河南荥阳人, 博士, 教授, 1984年、1987年于西北工业大学分别获得学士、硕士学位, 1993年在哈尔滨工业大学获博士学位, 主要从事精密与超精密加工方面的研究。E-mail:zhangfh@hit.edu.cn" ]
收稿日期:2018-02-01,
录用日期:2018-4-2,
纸质出版日期:2018-09-25
移动端阅览
王星, 徐琴, 张勇, 等. 纳米胶体自激脉冲空化射流抛光技术[J]. 光学 精密工程, 2018,26(9):2294-2303.
Xing WANG, Qin XU, Yong ZHANG, et al. Nanoparticle colloid self-induced pulsed cavitation jet polishing[J]. Optics and precision engineering, 2018, 26(9): 2294-2303.
王星, 徐琴, 张勇, 等. 纳米胶体自激脉冲空化射流抛光技术[J]. 光学 精密工程, 2018,26(9):2294-2303. DOI: 10.3788/OPE.20182609.2294.
Xing WANG, Qin XU, Yong ZHANG, et al. Nanoparticle colloid self-induced pulsed cavitation jet polishing[J]. Optics and precision engineering, 2018, 26(9): 2294-2303. DOI: 10.3788/OPE.20182609.2294.
为了满足光学复杂曲面的精密、高效加工,提出一种利用空化效应促进射流加工效率的光学表面加工方法——纳米胶体自激脉冲空化射流抛光,并研制了加工系统。采用流体动力学对纳米胶体自激脉冲空化射流抛光中的喷射过程进行了仿真,获得了周期为0.3 s的自激脉冲射流典型时刻下加工流场的流体动、静压力、速度、空化效应分布规律。进行了纳米胶体自激脉冲空化射流抛光试验,结果表明该系统能够产生效果良好的自激脉冲空化射流。采用该方法对单晶硅表面进行加工可以得到表面粗糙度为
R
a
0.904 nm(
R
ms
1.225 nm)的超光滑表面,此加工表面粗糙度质量与相同加工条件下的普通纳米胶体射流抛光相当,但其加工效率较普通纳米胶体射流抛光能够提升20%左右,能够满足光学表面高效精密加工的需要。
An optical surface processing method using the cavitation effect
termed as nanoparticle colloid self-induced pulsed cavitation jet polishing (NPCJP)
has been proposed to precisely machine complex optical surfaces with enhanced machining efficiency. The NPCJP system has been developed and simulated by fluid dynamics simulation. The dynamic pressure
static pressure
fluid velocity and cavitation effect of the polishing flow field corresponding to a pulse period of 0.3 s
have been determined. NPCJP jet experiments have been performed and the results show that the NPCJP system can effectively produce self-excited pulsed cavitation jet. NPCJP experiment on a single crystal silicon surface show that supersmooth surface with roughness of
R
a
0.904 nm (
R
ms
1.225 nm) can be obtained. The roughness of the surface obtained using the proposed method is equal to that obtained using the conventional nanoparticle colloid jet polishing method
but the processing efficiency of the NPCJP jet polishing method is higher by about 20%. The results show that the NPCJP method can effectively machine complex optical surfaces.
FÄHNLE O W, BRUG H, FRANKENA H J. Fluid jet polishing of optical surfaces[J]. Applied Optics, 1998, 37(28):6771-6773.
FÄEHNLE O W, BRUG H. Fluid jet polishing:removal process analysis[J].Korean Journal of Spine, 1999, 3739(2):61-64.
方慧, 郭培基, 余景池.液体喷射抛光材料去除机理的有限元分析[J].光学 精密工程, 2006, 14(2):218-223.
FANGH, Guo P J, YU J C Y U. Analysis of material removal mechanism in fluid jet polishing by finite element method[J].Opt. Precision Eng., 2006, 14(2):218-223. (in Chinese)
JAFAR R, NOURAEI H, EMAMIFAR M, et al.. Erosion modeling in abrasive slurry jet micro-machining of brittle materials[J]. Journal of Manufacturing Processes, 2015, 17:127-140.
FAEHNLE O W, DOETZ M, DAMBON O. Analysis of critical process parameters of ductile mode grinding of brittle materials[J]. Advanced Optical Technologies, 2017, 6(5):1-10.
SONG J L, SHI F, XIAO Q, et al .. Effect of elastic region nanoparticle SiO2 jet polishing on the laser damage properties of fused silica[C]. Proceedings of SPIE-The International Society for Optical Engineering , Shanghai, P.R. China: SPIE, 2017: 103392E.
王星, 张勇, 徐琴, 等.基于分子动力学仿真的纳米胶体射流抛光材料去除机理[J].中国表面工程, 2017, 30(1):16-25.
WANG X, ZHANG Y, XU Q, et al.. Material removal mechanism of nanoparticle colloid jet polishing based on the molecular dynamics simulation[J].China Surface Engineering, 2017, 30(1)16-25. (in Chinese)
BEAUCAMP A, NAMBA Y, FREEMAN R. Dynamic multiphase modeling and optimization of fluid jet polishing process[J].CIRP Annals-Manufacturing Technology, 2012, 61(1):315-318.
CAO Z C, CHEUNG C F, KONG L B. Computational fluid dynamics-based analysis of material removal characteristics in fluid jet polishing[J]. Journal of Engineering Manufacture, 2015, 16(9):993-997.
SHI C Y, YUAN J H, WU F, et al.. Material removal model of vertical impinging in fluid jet polishing[J]. Chinese Optics Letters, 2010, 8(3):323-325.
CAO Z C, CHI F C, REN M. Modelling and characterization of surface generation in Fluid Jet Polishing[J].Precision Engineering, 2016, 43:406-417.
CAO Z C, CHI F C. Theoretical modelling and analysis of the material removal characteristics in fluid jet polishing[J].International Journal of Mechanical Sciences, 2014, 89:158-166.
WANG C J, CHEUNG C F, LIU M Y. Numerical modeling and experimentation of three dimensional material removal characteristics in fluid jet polishing[J].International Journal of Mechanical Sciences, 2017, 133:568-577.
WANG R J, WANG C Y, WEN W, et al.. Experimental study on a micro-abrasive slurry jet for glass polishing[J].International Journal of Advanced Manufacturing Technology, 2016:1-12.
LOC P H. Investigation of optimal air-driving fluid jet polishing parameters for the surface finish of N-BK7 optical glass[J].Journal of Manufacturing Science & Engineering, 2013, 135(1):228-229.
BEAUCAMP A, FREEMAN R, WALKER D D. Removal of diamond-turning signatures on x-ray mandrels and metal optics by fluid jet polishing[C]. SPIE-the International Society for Optical Engineering , 2008: 701835-701835-7.
郑立功, 姚鹏, 张志宇, 等.金属结合剂金刚石砂轮的高压磨料水射流修锐技术[J].光学 精密工程, 2016, 24(10):477-483.
ZHENG L G, YAO P, ZHANG ZH Y, et al.. High-pressure abrasive water jet dressing of metal bonded diamond grinding wheel[J]. Opt. Precision Eng., 2016, 24(10):477-483.(in Chinese)
SONG X Z, ZHANG Y, ZHANG F, et al.. Experimental investigation on polishing of ultrasmooth surface in nanoparticle colloid jet machining[J].Proceedings of SPIE-The International Society for Optical Engineering, 2009, 7282(5):977-986.
ZHANG F, SONG X, ZHANG Y, et al.. Figuring of an ultra-smooth surface in nanoparticle colloid jet machining[J].Journal of Micromechanics and Microengineering, 2009, 19:1-6.
WANG C J, CHEUNG C F, HO L T, et al.. A novel multi-jet polishing process and tool for high-efficiency polishing[J]. International Journal of Machine Tools & Manufacture, 2017(115):60-73.
CHEUNG C F, WANG C J, CAO Z C, et al.. Development of a multi-jet polishing process for inner surface finishing[J/OL]. https://www.sciencedirect.com/science/article/pii/S0141635917302635?via%3Dihub https://www.sciencedirect.com/science/article/pii/S0141635917302635?via%3Dihub , 2017.
TSEGAW A A, SHIOU F J, LIN S P. Ultra-Precision Polishing of N-Bk7 Using an Innovative Self-Propelled Abrasive Fluid Multi-Jet Polishing Tool[J].Machining Science & Technology, 2015, 19(2):262-285.
LOC P H. Investigation of optimal air-driving fluid jet polishing parameters for the surface finish of N-BK7 optical glass[J]. Journal of Manufacturing Science & Engineering, 2013, 135(1):228-229.
LV Z, HUANG C Z, ZHU H, et al.. A research on ultrasonic-assisted abrasive water jet polishing of hard-brittle materials[J]. International Journal of Advanced Manufacturing Technology, 2015, 78(5-8):1361-1369.
BEAUCAMP A, KATSUURA T, KAWARA Z. A novel ultrasonic cavitation assisted fluid jet polishing system[J].CIRP Annals-Manufacturing Technology, 2017(66):301-304.
CHEN F J, WANG H, TANG Y, et al.. Novel cavitation fluid jet polishing process based on negative pressure effects[J]. Ultrasonics Sonochemistry, 2018, 42:339-346.
0
浏览量
266
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构