浏览全部资源
扫码关注微信
上海理工大学 教育部微创医疗器械工程中心, 上海 200093
[ "陈明惠(1981-), 女, 福建南靖人, 博士, 副教授, 硕士生导师, 2012年于浙江大学获得博士学位, 主要从事生物医学光子学方面的研究。E-mail:cmhui.43@163.com" ]
郑刚(1962-), 男, 浙江余姚人, 博士, 研究员, 博士生导师, 1993年于华东工业大学获得博士学位, 主要从事光学工程相关领域的教学及科研工作。E-mall: gangzheng@usst.edu.cnZHENG Gang, E-mall:gangzheng@usst.edu.cn
收稿日期:2018-06-12,
录用日期:2018-7-25,
纸质出版日期:2018-10-25
移动端阅览
陈明惠, 贾文宇, 何锦涛, 等. 双重滤波扫频光源的研制[J]. 光学 精密工程, 2018,26(10):2355-2362.
Ming-hui CHEN, Wen-yu JIA, Jin-tao HE, et al. Development of swept source based on dual filtering[J]. Optics and precision engineering, 2018, 26(10): 2355-2362.
陈明惠, 贾文宇, 何锦涛, 等. 双重滤波扫频光源的研制[J]. 光学 精密工程, 2018,26(10):2355-2362. DOI: 10.3788/OPE.20182610.2355.
Ming-hui CHEN, Wen-yu JIA, Jin-tao HE, et al. Development of swept source based on dual filtering[J]. Optics and precision engineering, 2018, 26(10): 2355-2362. DOI: 10.3788/OPE.20182610.2355.
扫频光源是目前光学相干层析成像的关键部分,其光谱带宽和瞬时线宽分别影响着成像系统的轴向分辨率和成像深度。在单一滤波器中,这两者相互制约。针对这一情况,提出了一个利用两种滤波器组合优化的扫频光源系统。以双半导体光放大器并联作为增益介质,将声光可调滤波器(AOTF)和法布里-珀罗可调滤波器(FFP-TF)串联接入环形腔内进行双重滤波。其中AOTF的调谐范围和瞬时线宽均较宽,FFP-TF与之相反,经同步匹配设置后,两者协调工作,能够发挥各自的优势。通过搭建系统,获得了中心波长为1 316 nm的扫频激光输出,其光谱是1 235~1 380 nm,调谐范围是145 nm,瞬时线宽小于0.02 nm,扫频速度为1.35 kHz,输出光功率为0.48 mW。该扫频光源能够克服单一滤波器的固有缺陷,实现宽光谱带宽与窄瞬时线宽的有效统一,对成像综合性能的优化具有重要意义。
Swept source is a key component of optical coherence tomography; its spectral bandwidth and instantaneous linewidth directly affect the axial resolution and imaging depth of the imaging system. In a single filter
the two parameters are mutually exclusive. Here
a swept source system with two filters combined for optimization was proposed. Two semiconductor optical amplifiers in parallel were used as the gain medium. An acousto-optic tunable filter (AOTF) and a Fiber Fabry-Perot Tunable Filter (FFP-TF) were connected in series in a ring cavity. The tuning range and instantaneous linewidth of the AOTF were relatively wide
while those of the FFP-TF were comparatively narrower. Post synchronization and matching setting
the two filters worked in coordination with mutual advantage. The system delivers a swept output with a center wavelength of 1 316 nm. The spectral range is between 1 235-1 380 nm
while the tuning range
instantaneous linewidth
sweep speed
and output optical power are 145 nm
less than 0.02 nm
1.35 kHz
and 0.48 mW
respectively. The swept light source can overcome the inherent defects of a single filter and achieve an effective compromise between the broad spectral bandwidth and narrow instantaneous linewidth. This is of great significance for optimizing the overall imaging performance.
DE BOER J F, LEITGE R, WOJTKOWSKI M. Twenty-five years of optical coherence tomography:the paradigm shift in sensitivity and speed provided by Fourier domain OCT[J]. Biomed Opt Express, 2017, 8(7):3248-3280.
HILLMANN D, BONIN T, L HRS C, et al.. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT[J]. Opt Express, 2012, 20(6):6761-6776.
DHALLA A-H, NANKIVIL D, IZATT J A. Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival[J]. Biomed Opt Express, 2012, 3(3):633-649.
WOJTKOWSKI M. High-speed optical coherence tomography:basics and applications[J]. Appl Opt, 2010, 49(16):D30-D61.
GORA M, KARNOWSKI K, SZKULMOWSKI M, et al.. Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range[J]. Opt Express, 2009, 17(17):14880-14894.
CASTONGUAY A, LEFEBVRE J, POULIOT P, et al. Serial optical coherence scanning reveals an association between cardiac function and the heart architecture in the aging rodent heart[J]. Biomed Opt Express, 2017, 8(11):5027-5038.
TUCKER-SCHWARTZ J M, BEAVERS K R, SIT W W, et al.. In vivo imaging of nanoparticle delivery and tumor microvasculature with multimodal optical coherence tomography[J]. Biomed Opt Express, 2014, 5(6):1731-1743.
AHN Y-C, KIM S W, HWANG S S, et al.. Optical imaging of subacute airway remodeling and adipose stem cell engraftment after airway injury[J]. Biomed Opt Express, 2014, 5(1):312-321.
秦玉伟.润滑油膜厚度的光学相干层析成像测量[J].光学精密工程, 2017, 25(5):1142-1148.
QIN Y W. Thickness measurement of lubricant film by optical coherence tomography[J]. Opt. Precision Eng., 2017, 25(5):1142-1148. (in Chinese)
CHOMA M A, SARUNIC M V, YANG C, et al.. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Opt Express, 2003, 11(18):2183-2189.
WATANABE Y, SAJIMA F, ITAGAKI T, et al.. High-speed linear detection time domain optical coherence tomography with reflective grating-generated spatial reference delay[J]. Appl Opt, 2009, 48(18):3401-3406.
LI K, CHASE C, QIAO P, et al.. Widely tunable 1060-nm VCSEL with high-contrast grating mirror[J]. Opt Express, 2017, 25(10):11844-11854.
ZARA J M, YAZDANFAR S, RAO K D, et al.. Electrostatic micromachine scanning mirror for optical coherence tomography[J]. Opt Lett, 2003, 28(8):628-630.
ZHANG J, JING J, WANG P, et al.. Polarization-maintaining buffered Fourier domain mode-locked swept source for optical coherence tomography[J]. Opt Lett, 2011, 36(24):4788-4790.
AVANAKI M R N, BRADU A, PODOLEANU A. Optimization of excitation of fiber Fabry-Perot tunable filters used in swept lasers using a phase-correction method[J]. Appl Opt, 2017, 56(12):3378-3382.
LU C D, KRAUS M F, POTSAID B, et al.. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror[J]. Biomed Opt Express, 2014, 5(1):293-311.
JOHN D D, BURGNER C B, POTSAID B, et al.. Wideband electrically pumped 1050-nm MEMS-tunable VCSEL for ophthalmic imaging[J]. J. Lightwave Technol., 2015, 33(16):3461-3468.
CAO J, WANG P, ZHANG Y, et al.. Methods to improve the performance of the swept source at 1.0μm based on a polygon scanner[J]. Photon. Res., 2017, 5(3):245-250.
HARIRI S, MOAYED A A, DRACOPOULOS A, et al.. Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060nm wavelength range[J]. Opt Express, 2009, 17(26):24304-24316.
潘聪.扫频OCT系统及其功能成像研究与应用[D].杭州: 浙江大学, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3157147
PAN C. Research and Application of Swept Source Optical Coherence Tomography and Its Functional Imaging [D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
0
浏览量
252
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构