浏览全部资源
扫码关注微信
1.中国科学院 安徽光学精密机械研究所, 安徽 合肥 230031
2.合肥师范学院 电子信息工程学院, 安徽 合肥 230601
[ "于磊(1984-), 男, 内蒙古呼伦贝尔人, 博士, 副研究员, 硕士生导师, 2007年于中国科学技术大学获得学士学位, 2012年于中国科学院长春光机所获得博士学位, 主要从事成像光谱遥感仪器的设计。E-mail:top1gods@mail.ustc.edu.cn" ]
[ "申远(1986-), 男, 湖南怀化人, 博士, 副教授, 2007年于中国科学技术大学获得学士学位, 2012年于中国科学技术大学获得博士学位, 现为合肥师范学院机械电子系系主任, 主要从事光机电一体化的研究。E-mail:shenyuan@ustc.edu.cn" ]
收稿日期:2018-01-18,
录用日期:2018-3-10,
纸质出版日期:2018-10-25
移动端阅览
于磊, 陈结祥, 薛辉, 等. 用于沿海水色探测的机载紫外-可见-近红外高光谱成像仪[J]. 光学 精密工程, 2018,26(10):2363-2370.
Lei YU, Jie-xiang CHEN, Hui XUE, et al. Hyper-spectral imaging sensor in UV-VIS-NIR region in air for coastal ocean observation[J]. Optics and precision engineering, 2018, 26(10): 2363-2370.
于磊, 陈结祥, 薛辉, 等. 用于沿海水色探测的机载紫外-可见-近红外高光谱成像仪[J]. 光学 精密工程, 2018,26(10):2363-2370. DOI: 10.3788/OPE.20182610.2363.
Lei YU, Jie-xiang CHEN, Hui XUE, et al. Hyper-spectral imaging sensor in UV-VIS-NIR region in air for coastal ocean observation[J]. Optics and precision engineering, 2018, 26(10): 2363-2370. DOI: 10.3788/OPE.20182610.2363.
本文主要设计一种新型的可用于机载的紫外-可见-近红外高光谱成像系统,从而为沿海水色环境与污染观测提供一种有效的观测仪器。首先,根据探测目标特点确定了仪器系统的性能设计参数,选择了Dyson成像光谱系统来满足系统在宽谱段上的高信噪比和高光学性能;但Dyson成像光谱系统的结构过于紧凑,因此对Dyson成像光谱系统进行了研究,调整了狭缝、像面和光学元件的位置,使它们在轴向和垂直轴向上均具备足够的间隔,并在这种大空气间隔下分析了系统的完善消像差条件。通过光程分析和弯月透镜的加入,使改进型Dyson系统在0.278的数值孔径和320~1 000 nm的宽波段上具备良好的成像结果,全视场全波段MTF值在探测器奈奎斯特频率下(38.5 lp/mm)高于0.5,研制原理样机的光谱分辨率为3.375 nm,满足设计要求。该系统可为沿海水色环境的高光谱观测提供良好的工程应用基础。
A novel ultraviolet-visible-near infrared imaging spectral system in air has been demonstrated to provide an effective instrument to measure the environment and pollution of the ocean along the coastal area. Based on the characteristics of the targets
different parameters of the performance of the system have been proposed. The Dyson imaging spectrometer was chosen to satisfy the requirements of the signal-to-noise ratio and the high optical performance. The Dyson spectrometer has not been widely applied in the engineering field because of its structural limitations. To solve this problem
the distances amongst the slit
the imaging plane
and the optical elements were increased to modify the traditional shape of the spectrometer. Therefore
perfect aberration eliminated conditions of the advanced system were obtained through analysis and addition of lenses. The advanced Dyson spectrometer presents excellent design features with an NA of 0.278 in the range of 320-1 000 nm. The Modulation Transfer Functions (MTFs) in all fields of views and all wavebands are larger than 0.5 at the Nyquist frequency 38.5 lp/mm of the detector. The prototype has a spectral resolution of 3.375 nm
satisfying the design requirement. This new spectrometer is more convenient and effective for coastal ocean observation.
MOREL A, PRIEUR L. Analysis of variations in ocean color[J]. Limnol. Oceanogr, 1977, 22(4):709-722.
张晶, 王淑荣, 黄煜, 等.临边成像光谱仪的发展现状与进展[J].中国光学, 2013, 6(5):692-700.
ZHANG J, WANG SH R, HUANG Y, et al.. Status and development of limb imaging spectrometers[J]. Chinese Optics, 2013, 6(5):692-700. (in Chinese)
尹诗, 冯玉涛, 白清兰, 等.紧凑型空间外差成像光谱仪设计[J].光子学报, 2018, 47(3):161-169.
YIN, SH, FENG Y T, BAI Q L, et al.. Design of compact spatial heterodyne imaging spectrometer[J]. Acta Photonica Sinica, 2018, 47(3):161-169. (in Chinese)
OH E, KANG H, HYDN S, et al.. Design and performance analysis of front end optical instrument for coastal water remote sensing[J]. SPIE, 2015, 9655:96553Z 1-4.
WALLIAMS M D, VAN AARDT J, KEREKES P. Generation of remotely sensed reference data using low altitude, high spatial resolution hyperspectral imagery[J]. SPIE, 2016, 9840:98401R1-10.
CHRISTOPHER S, EMEST R, FRED O. The mapping reflected-energy sensor-MaRS:a new level of hyperspectral technology[J]. SPIE, 2009, 7457:1-8.
MOUROULIS P, VAN GORP B, GREEN R O, et al.. Portable remote imaging spectrometer coastal ocean sensor:design, characteristics, and first flight results[J]. Appl. Opt., 2014, 53(7):1363-1380.
LOBB D R. Theory of concentric designs for grating spectrometers[J]. Appl. Opt., 1994, 33(13):2648-2658.
WYNNE C G. Monocentric telescopes for microlithography[J]. Opt. Eng., 1987, 26(4):300-303.
MOUROULIS P, GREEN R O, WILSON D W. Optical design of a coastal ocean imaging spectrometer[J]. Opt. Express, 2008, 16(12):9087-9096.
薛庆生, 王淑荣, 于向阳.大相对孔径宽波段Dyson光谱成像系统[J].光学精密工程, 2013, 21(10):2535-2542.
XUE Q SH, WANG SH R, YU X Y. Dyson spectral imaging system with large relative aperture and wide spectral region[J]. Opt. Precision Eng., 2013, 21(10):2535-2542. (in Chinese)
曹佃生, 石振华, 林冠宇.机载海洋改进型Dyson高光谱成像仪的研制[J].光学精密工程, 2017, 25(6):1403-1409.
CAO D SH, SHI ZH H, LIN G Y. Development of airborne ocean modified Dyson hyperspectral imager[J]. Opt. Precision Eng., 2017, 25(6):1403-1409. (in Chinese)
YU L. Upgrade of a UV-VIS-NIR imaging spectrometer for the coastal ocean observation:concept, design, fabrication, and test of prototype[J]. Opt. Express, 2017, 25(13):15526-15538.
CARLOS M O, XESUS P B, HECTOR G N, et al.. Design of Dyson imaging spectrometers based on the Rowland circle concept[J]. Appl. Opt., 2011, 50(35):6487-6494.
LIU CH, CHRISTOPH S, THOMAS F P, UWE D Z, et al.. Comparison of hyperspectral imaging spectrometer designs and the improvement of system performance with freeform surfaces[J]. Appl. Opt., 2017, 56(24):6894-6901.
YU L, WANG SH R, LIN G Y, et al.. Spectral broadband anastigmatic Wadsworth imaging spectrometer[J]. Opt. Express, 2015, 23(1):101-109.
0
浏览量
239
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构