浏览全部资源
扫码关注微信
1.北京工业大学 应用数理学院, 北京 100124
2.中国科学院 光电研究院, 北京 100094
[ "杨聚庆(1972-), 男, 河南南阳人, 博士研究生, 副教授, 1995年于西安工业大学获得学士学位, 2007年于华中科技大学获得硕士学位, 主要研究方向为机器人控制、激光测量及光电测控技术。E-mail:yangjuqing@aoe.ac.cn" ]
收稿日期:2018-01-15,
录用日期:2018-3-30,
纸质出版日期:2018-10-25
移动端阅览
杨聚庆, 王大勇, 董登峰, 等. 机械臂全工作空间域非参数约束位姿误差估算[J]. 光学 精密工程, 2018,26(10):2430-2437.
Ju-qing YANG, Da-yong WANG, Deng-feng DONG, et al. Estimation of pose errors with non-parametric constraint of manipulator in entire workspace domain[J]. Optics and precision engineering, 2018, 26(10): 2430-2437.
杨聚庆, 王大勇, 董登峰, 等. 机械臂全工作空间域非参数约束位姿误差估算[J]. 光学 精密工程, 2018,26(10):2430-2437. DOI: 10.3788/OPE.20182610.2430.
Ju-qing YANG, Da-yong WANG, Deng-feng DONG, et al. Estimation of pose errors with non-parametric constraint of manipulator in entire workspace domain[J]. Optics and precision engineering, 2018, 26(10): 2430-2437. DOI: 10.3788/OPE.20182610.2430.
针对机械臂全工作空间域位姿误差估算,提出了非参数化约束的运动学误差综合解算与动态估算方法。基于误差等效微分变量和多关节运动的连杆坐标系误差等效微分变换,构建了机械臂运动学动态非参数化约束的位姿误差模型。将多因素产生末端位姿误差归结为与关节转角变量有关的周期性动态函数变化,实现了机械臂综合误差的动态函数化描述。根据多连杆坐标系关节运动耦合规律,设计了多关节运动空间坐标系位姿在线解耦变换与补偿算法。全工作空间域验证实验中,误差估算值与测量值之间的位置坐标的最大绝对值偏差小于0.01 mm,姿态角的最大绝对值偏差小于0.03°。实验结果表明,该方法可提高机械臂全工作空间域位姿误差估算的精度与可靠性。
The methods for obtaining the solutions to kinematics error with nonparametric constraint and dynamic estimation were proposed herein to estimate the position and orientation of a manipulator in the entire workspace domain. The pose error model of dynamic nonparameterized constraint of manipulator was constructed based on the equivalent differential transformation of the link system
which in turn was based on the error equivalent differential variable and multi-joint motion. This study presented a dynamic functional description of the comprehensive error of the manipulator as the periodic dynamic function related to the joint angle variable was changed. Online decoupling transformation and compensation algorithm of a multi-joint motion space coordinate system were designed in accordance with the coupling law of joint motion of multilink coordinate systems. Verification experiments performed in the entire workspace domain reveal that the error estimation and measured values of the coordinates between the positions have maximum absolute deviations less than 0.01 mm
while the absolute deviation of the orientation angle is less than 0.03°. The experimental results indicate that this method can improve the accuracy and reliability of error estimation in the entire workspace domain.
JING W, TAO P Y, YANG G L, et al .. Calibration of industry robots with consideration of loading effects using Product-Of-Exponential (POE) and Gaussian Process (GP)[C]. 2016 IEEE International Conference on Robotics and Automation , 2016: 4380-4385. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7487636
REINHART G, GRASER R G, KLINGEL R, et al.. Qualification of standard industrial robots to cope with sophisticated assembly tasks[J].CIRP Annals, 1998, 47(1):1-4.
HEISEL U, RICHTER F, WURST K H. Thermal behaviour of industrial robots and possibilities for error compensation[J]. CIRP Annals-Manufacturing Technology, 1997, 46(1):283-286.
KLIMCHIK A, WU Y, CARO S, et al.. Geometric and elastostatic calibration of robotic manipulator using partial pose measurements[J]. Adv. Robot., 2014, 28(21):1419-1429.
ZHOU J, KANG H J. A hybrid least-squares genetic algorithm-based algorithm for simultaneous identification of geometric and compliance errors in industrial robots[J]. Adv. Mech. Eng., 2015, 7(6):168781401559028.
SAADAT M, SIM R, NAJAFI F. Prediction of geometrical variations in Airbus wingbox assembly[J]. Assem. Autom., 2007, 27(4):324-332.
任永杰, 邾继贵, 杨学友, 等.利用激光跟踪仪对机器人进行标定的方法[J].机械工程学报, 2007, 43(9):195-200.
REN Y J, ZHU J G, YANG X Y, et al.. Method of robot calibration based on laser tracker[J]. Chinese Journal of Mechanical Engineering, 2007, 43(9):195-200. (in Chinese)
VEITSCHEGGER W K, WU C H. Robot calibration and compensation[J]. IEEE J. Robot. Autom., 1988, 4(6):643-656.
DU G L, ZHANG P. Online serial manipulator calibration based on multisensory process via extended Kalman and particle filters[J]. IEEE Trans. Ind. Electron., 2014, 61(12):6852-6859.
杨守瑞, 尹仕斌, 任永杰, 等.机器人柔性视觉测量系统标定方法的改进[J].光学 精密工程, 2014, 22(12):3239-3246.
YANG SH R, YIN SH B, REN Y J, et al.. Improvement of calibration method for robotic flexible visual measurement systems[J]. Opt. Precision Eng., 2014, 22(12):3239-3246. (in Chinese)
LIU C, CHEAH C C, SLOTINE J J E. Adaptive task-space regulation of rigid-link flexible-joint robots with uncertain kinematics[J]. Automatica, 2008, 44(7):1806-1814.
LI C, WU Y, LOWE H, et al.. POE-based robot kinematic calibration using axis configuration space and the adjoint error model[J]. IEEE Trans. Robot., 2016, 32(5):1264-1279.
SLAMANI M, NUBIOLA A, BONEV I A. Modeling and assessment of the backlash error of an industrial robot[J]. Robotica, 2012, 30:1167-1175.
SANTOLARIA J, CONTE J, PUEO M, et al.. Rotation error modeling and identification for robot kinematic calibration by circle point method[J]. Metrol. Meas. Syst., 2014, 21(1):85-98.
ALICI G, SHIRINZADEH B. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing[J]. Mech. Mach. Theory, 2005, 40(8):879-906.
YANG J Q, WANG D Y, FAN B X, et al.. Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement[J]. Opt. Eng., 2017, 56(3):034111.
YANG J Q, WANG D Y, ZHOU W H. Precision laser tracking servo control system for moving target position measurement[J]. Optik, 2017, 131:994-1002.
刘娇月, 杨聚庆, 董登峰, 等.激光跟踪仪的光电瞄准与定位系统[J].光学 精密工程, 2015, 23(6):1558-1564.
LIU J Y, YANG J Q, DONG D F, et al.. Optoelectronic aiming and orientation system of laser tracker[J]. Opt. Precision Eng., 2015, 23(6):1558-1564. (in Chinese)
0
浏览量
247
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构