浏览全部资源
扫码关注微信
南京工程学院 自动化学院, 江苏 南京 211167
[ "王东霞(1973-), 河南南阳人, 博士, 副教授, 1997年、2003年于山东科技大学分别获得学士、硕士学位, 2015年于东南大学获得博士学位, 主要研究方向为精密计量技术、进化计算。E-mail:wangdongxia93@163.com" ]
[ "温秀兰(1966-), 内蒙古丰镇人, 博士, 教授, 1988年于南京理工大学获得学士学位, 1991年于中北大学获得硕士学位, 2004年于东南大学获得博士学位, 主要研究方向为智能计算、逆向工程和精密计量技术。E-mail:zdhxwxl@njit.edu.cn" ]
收稿日期:2018-03-12,
录用日期:2018-4-16,
纸质出版日期:2018-10-25
移动端阅览
王东霞, 温秀兰, 乔贵方. 工件圆度误差测量不确定度评定[J]. 光学 精密工程, 2018,26(10):2438-2445.
Dong-xia WANG, Xiu-lan WEN, Gui-fang QIAO. Estimation of uncertainty in measuring the workpiece circularity error[J]. Optics and precision engineering, 2018, 26(10): 2438-2445.
王东霞, 温秀兰, 乔贵方. 工件圆度误差测量不确定度评定[J]. 光学 精密工程, 2018,26(10):2438-2445. DOI: 10.3788/OPE.20182610.2438.
Dong-xia WANG, Xiu-lan WEN, Gui-fang QIAO. Estimation of uncertainty in measuring the workpiece circularity error[J]. Optics and precision engineering, 2018, 26(10): 2438-2445. DOI: 10.3788/OPE.20182610.2438.
为了实现工件圆度误差的不确定度评定,对基于三坐标测量机的工件圆度轮廓数据的采样策略、圆度评定方法及不确定度评定方法进行研究。首先,根据工件圆度轮廓特征进行实验测量,获取不同工件的多个样本。接着,基于最小二乘法和微分进化优化算法对样本的圆度误差进行了误差评定。然后,在分析比较误差大小的基础上,说明了采用的采样策略和微分进化评定算法。最后,基于圆度误差评定结果运用了测量不确定度表示指南(GUM)和蒙特卡洛方法(MCM)进行不确定度评定。实验结果表明:微分进化算法与最小二乘法相比均值差最大达到1.1
μ
m,MCM方法比GUM方法得到的标准不确定度均值小0.02
μ
m。合理的采样点数、微分进化算法及MCM不确定度评定方法可以得到更稳定可靠、精度高的评定结果。
In order to realize the uncertainty evaluation of the workpiece circularity error
the sampling strategy
error evaluation method
and uncertainty of the circular outline of the workpiece were investigated based on the Coordinate Measuring Machine (CMM). First
to achieve many samples from different workpieces
circular outlines were measured. Next
the sample circularity errors were evaluated according to the Differential Evolution (DE) algorithm. Then
by comparing the errors
the adopted sampling strategies and the DE algorithm were explained. Finally
based on the results of the circularity error
the uncertainty was evaluated by applying the GUM and MCM methods. The maximum average difference is 1.1
μ
m
and the average standard uncertainty of the MCM method is 0.02
μ
m less than the GUM method. More stable
reliable
and accurate results can be obtained using reasonable sampling points
DE algorithm
and MCM evaluation method.
JIANG Q M, FENG H Y, OUYANG D S, et al.. A roundness evaluation algorithm with reduced fitting uncertainty of CMM measurement data[J]. Journal of Manufacturing Systems, 2006, 25(3):184-195.
WEN X L, SONG A G. Cylindricity error evaluation based on an inproved genetic algorithm[J]. Acta Metrologica Sinica, 2004, 25(2):115-118.
SAMUEL G L, SHUNMUGAM M S. Evaluation of circularity from coordinate and form data using computational geometric techniques[J]. Precision Engineering, 2000, 24(3):251-263.
HUANG J. A new strategy for circularity problems[J]. Precision Engineering, 2001, 25(4):301-308.
ZHU L M, DING H, XIONG Y L. A steepest descent algorithm for circularity evaluation[J]. Computer Aided Design, 2003(35):255-265.
ZHU X Y, DING H. Flatness tolerance evaluation:an approximate minimum zone solution[J]. Computer Aided Design, 2002, 34(9):655-665.
EDGEWORH R, WILHELM R. Adaptive sampling for coordinate metrology[J]. Precision Engineering, 1999, 23(3):144-154.
廖平.基于遗传算法的形状误差计算研究[D].长沙: 中南大学, 2002. http://cdmd.cnki.com.cn/Article/CDMD-10533-2004116259.htm
LIAO P. Research of Form Error Calculation Based on Genetic Algorithm [D].Changsha: Central South University, 2002.(in Chinese)
HEMANT R, SRIKANTH B A, YASHPAL K. A multivariate statistical analysis of sampling uncertainties in geometric and dimensional errors for circular features[J]. J. Manuf. Syst., 2006, 25(2):77-94.
CHAN F M M, KING T G, STOUT K J. The influence of sampling strategy on a circular feature in coordinate measurements[J]. Measurement, 1996, 19(2):73-81.
ODI O. Development of Methodologies for Measurement of Circles on a Coordinate Measuring Machine [D]. Caroline: UNC Charlotte, 1992.
DHANISH P B, MATHEW J. Effect of CMM point coordinate uncertainty on uncertainties in determination of circular features[J]. Measurement, 2006, 39(6):522-531.
FENG X C J, SAAL A L, SALSBURY J G, et al.. Design and analysis of experiments in CMM measurement uncertainty study[J]. Precis. Eng., 2007, 31(2):94-101.
FERRERO A, PRIOLI M, SALICONE S. Processing dependent systematic contributions to measurement uncertainty[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(4):720-731.
KRUTH J P. Uncertainty determination for CMMs by Monte Carlo simulation integrating feature form deviations[J]. CIRP Annals-Manufacturing Technology, 2009, 58(1):463-466.
JCGM member organizations. JCGM 101, Evaluation of measurement data-Supplement 1 to the "Guide to the expression of uncertainty in measurement"-Propagation of distributions using a Monte Carlo method[S]. BIPM Joint Committee for Guides in Metrology, Sevres, 2008.
张仁勇, 罗建军, 程潏, 等.基于微分进化算法的深空轨道全局优化设计[J].力学学报, 2012, 44(6):1079-1083.
ZHANG R Y, LUO J J, CHENG J, et al..The global optimization of space exploration trajectory design based on differential evolution algorithm[J].Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6):1079-1083.(in Chinese)
谷勇强, 张立超, 武潇野, 等.基于指数法评估激光量热仪吸收测量不确定度[J].光学 精密工程.2016, 24(2):278-285.
GU Y Q, ZHANG L CH, WU X Y, et al.. Evaluation of absorption measurement uncertainty of laser calorimeter by exponential method[J]. Opt. Precision Eng., 2016, 24(2):278-285.(in Chinese)
程亚平, 张恩忠, 齐月玲, 等.光学自由曲面精密数控机床几何误差测量与综合建模[J].光学 精密工程.2017, 25(10):174-182.
CHENG Y P, ZHANG E ZH, QI Y L, et al.. Geometric error measurement and integrated modeling for precision CNC machine tools of optical free-form surface[J].Opt. Precision Eng., 2017, 25(10):174-182.(in Chinese)
胡毅, 江超, 黄炜, 等.用蚁群算法求解关节式坐标测量机的最佳测量区[J].光学 精密工程, 2017, 25(6):1487-1493.
HU Y, JIANG CH, HUANG W, et al.. Optimal measurement area of articulated coordinate measuring machine calculated by ant colony algorithm[J].Opt. Precision Eng., 2017, 25(6):1487-1493.(in Chinese)
周炼, 安晨辉, 候晶, 等.圆弧金刚石砂轮三维几何形貌的在位检测和误差评价[J].光学 精密工程.2017, 25(12):2079-3088.
ZHOU L, AN CH, HOU J, et al..3D geometric topographic measurement and error evaluation of are diamond wheel[J].Opt. Precision Eng., 2017, 25(12):2079-3088.(in Chinese)
International Standard Organization. ISO/TS 14253-2: 1999. Geometrical Product Specification (GPS)-Inspection by Measurement of Workpieces and Measuring Equipment. Part 2: Guide to the Estimation of Uncertainty in GPS Measurement, in Calibration of Measuring Equipment and in Product Verific[S]. Switzerland: ISO copyright office, 1999.
BARINI E M, TOSELLO G, DE CHIFFRE L. Uncertainty analysis of point-by-point sampling complex surfaces using touch probe CMMs:DOE for complex surfaces verification with CMM[J]. Precision Engineering, 2010, 34(1):16-21.
0
浏览量
208
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构