浏览全部资源
扫码关注微信
太原科技大学 电子信息工程学院, 山西 太原 030024
[ "王贞艳(1981-), 女, 山西运城人, 副教授, 硕士研究生导师, 2002年于太原重型机械学院获得学士学位, 2005年于太原科技大学获得硕士学位, 2013年于北京航空航天大学获得博士学位, 主要从事非线性系统、先进控制、智能控制等方面的研究。E-mail:w9851@126.com" ]
[ "贾高欣(1990-), 女, 河北石家庄人, 硕士研究生, 2014年于河北联合大学获得学士学位, 主要从事迟滞非线性系统的建模及控制方面的研究。E-mail:jiagaoxin2017@163.com" ]
收稿日期:2017-11-09,
录用日期:2018-1-7,
纸质出版日期:2018-10-25
移动端阅览
王贞艳, 贾高欣. 压电陶瓷作动器非对称迟滞建模与内模控制[J]. 光学 精密工程, 2018,26(10):2484-2492.
Zhen-yan WANG, Gao-xin JIA. Asymmetric hysteresis modeling and internal model control of piezoceramic actuators[J]. Optics and precision engineering, 2018, 26(10): 2484-2492.
王贞艳, 贾高欣. 压电陶瓷作动器非对称迟滞建模与内模控制[J]. 光学 精密工程, 2018,26(10):2484-2492. DOI: 10.3788/OPE.20182610.2484.
Zhen-yan WANG, Gao-xin JIA. Asymmetric hysteresis modeling and internal model control of piezoceramic actuators[J]. Optics and precision engineering, 2018, 26(10): 2484-2492. DOI: 10.3788/OPE.20182610.2484.
压电陶瓷作动器被广泛应用于精密定位和控制中,但其本身存在的非对称迟滞非线性特性,严重影响了系统的定位和控制精度。针对这一问题,提出了一种基于广义Bouc-Wen模型的非对称迟滞建模方法,并利用差分进化算法辨识模型参数;基于所建的广义Bouc-Wen模型构建了其具有解析形式的迟滞逆模型,并设计了内模控制方案实现对压电陶瓷作动器的精密跟踪控制;最后在压电陶瓷作动器实验平台,对所提出的建模和控制方案进行了实验验证。对压电陶瓷作动器的建模结果表明,系统建模误差均小于0.051 0,比经典Bouc-Wen模型的建模误差降低约21%~46%;对100 Hz内幅值为20
μ
m的期望位移信号的控制实验结果表明,所提出的控制方法具有良好的实时跟踪性能和跟踪控制精度。对100 Hz期望信号的跟踪控制均方根误差为0.491 6
μ
m,相对误差为0.040 2
μ
m,可以很好地满足实际工程需要。
Piezoceramic actuators are widely used in precision positioning and control; however
their asymmetric hysteretic characteristics severely affect the position and control accuracy of a system. To address this problem
a modeling method was proposed based on the generalized Bouc-Wen model
and the system parameters of the model were identified using the differential evolution method. Based on the generalized Bouc-Wen model
a hysteretic compensation control strategy with an analytical form was developed and an internal model control scheme to control the piezoceramic actuators was proposed. An experimental platform was developed to verify the effectiveness of the modeling and control strategy. The results of modeling a piezoceramic actuator reveal that all modeling errors are within 0.051 0. Compared with the conventional Bouc-Wen model
our proposed control model can reduce the modeling errors by approximately 21%-46%. Experimental results from the tracking of amplitudes of 20
μ
m and frequency signals within 100 Hz indicate that the proposed control method offers effective real-time tracking performance and control accuracy. For 100 Hz
the root mean square error and relative error between the reference and output of the piezoceramic actuators were 0.491 6
μ
m and 0.040 2
μ
m
respectively
indicating that the proposed control model can satisfy the requirements of practical applications.
朱炜, 芮筱亭.压电执行器的Bouc-Wen模型在线参数辨识[J].光学 精密工程, 2015, 23(1):110-116.
ZHU W, RUI X T. Online parameter identification of Bouc-Wen model for piezoelectric actuators[J]. Opt. Precision Eng., 2015, 23(1):110-116. (in Chinese)
LI Z, ZHANG X, SU C Y, et al .. Nonlinear control of systems preceded by preisach hysteresis description:a prescribed adaptive control approach[J]. IEEE Transactions on Control Systems Technology, 2016, 24(2):451-460.
翟鹏, 肖博涵, 贺凯, 等.超磁致伸缩致动器的复合反馈控制及其在变椭圆销孔精密加工中的应用[J].光学 精密工程, 2016, 24(6):1389-1398.
ZHAI P, XIAO B H, HE K, et al .. Composite backward control for GMA and its application in high precision machining of variable ellipse pinhole[J]. Opt. Precision Eng., 2016, 24(6):1389-1398. (in Chinese)
LIU D, FUJⅡ F. Adaptive internal model control design for positioning control of a piezo-ceramic actuator with rate-dependent hysteresis[J]. Mechanical Engineering Journal, 2015, 2(6):15-00190.
宋召青, 龙玉峰, 王康.基于支持向量机的迟滞系统建模及性能研究[J].计算机仿真, 2015, 32(3):398-402.
SONG ZH Q, LONG Y F, WANG K. Modeling and performance research on hysteresis system basing on SVM[J]. Computer Simulation, 2015, 32(3):398-402. (in Chinese)
谢扬球, 谭永红.压电陶瓷执行器的非光滑三明治模型辨识与内模控制[J].控制理论与应用, 2013, 30(5):567-576.
XIE Y Q, TAN Y H. Identification and control piezoceramic actuator using nonsmooth sandwich model[J]. Control Theory & Applications, 2013, 30(5):567-576. (in Chinese)
RONG C, HE Z, LI D, et al .. Online parameter identification of giant magnetostrictive actuator based on dynamic jiles-atherton model[J]. Rsc Advances, 2016, 6:115.
LIN C, LIN P. Tracking control of a biaxial pieo-actuated positioning stageusing generalized Duhem model[J]. Computers & Mathematics with Applications.2012, 64(5):766-787.
杨晓京, 彭芸浩, 李尧.压电微位移台的动态迟滞建模及实验验证[J].光学 精密工程, 2016, 24(9):2255-2261.
YANG X J, PENG Y H, LI Y. Dynamic hysteresis modeling and experimental verification of piezoelectric positioning stage[J]. Opt. Precision Eng., 2016, 24(9):2255-2261. (in Chinese)
KIUREGHIAN A D, SONG J. Generalized Bouc-Wen model for highly asymmetric hysteresis[J]. Journal of Engineering Mechanics, 2006, 132(6):610-618.
方楚, 郭劲, 徐新行, 等.压电陶瓷迟滞非线性前馈补偿器[J].光学 精密工程, 2016, 24(9):2217-2223.
FANG CH, GONG J, XU X X, et al .. Compensating controller for hysteresis nonlinerity of piezoelectric ceramics[J]. Opt. Precision Eng., 2016, 24(9):2217-2223. (in Chinese)
GAN M, ZHI Q, YANLONG L I. Sliding mode control with perturbation estimation and hysteresis compensator based on Bouc-Wen model in tackling fast-varying sinusoidal position control of a piezoelectric actuator[J]. Journal of Systems Science and Complexity, 2016, 29(2):367-381.
CHEN X, SU C Y, LI Z, et al .. Design of implementable adaptive control for Micro/Nano positioning system driven by piezoelectric actuator[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10):6471-6481.
孟爱华, 刘成龙, 陈文艺, 等.超磁致伸缩致动器的小脑神经网络前馈逆补偿-模糊PID控制[J].光学 精密工程, 2015, 23(3):753-759.
MENG A H, LIU CH L, CHEN W Y, et al .. CMAC feedforward inverse compensation-fuzzy PID control for giant magnetostrictive actuator[J]. Opt. Precision Eng., 2015, 23(3):753-759. (in Chinese)
CHENG L, LIU W, YANG C, et al .. A neural-network-based controller for piezoelectric-actuated stick-slip devices[J]. IEEE Transactions on Industrial Electronics, 2017, PP (99):1-1.
王贞艳, 张臻, 周克敏.压电作动器的动态迟滞建模与H∞鲁棒控制[J].控制理论与应用, 2014, 31(1):35-41.
WANG ZH Y, ZHANG ZH, ZHOU K M. Dynamic hysteresis modeling and H-infinity robust control of piezoelectric actuators[J]. Control Theory & Applications, 2014, 31(1):35-41. (in Chinese)
WANG D H, ZHU W, YANG Q. Linearization of stack piezoelectric ceramic actuators based on Bouc-Wen model[J]. Journal of Intelligent Material Systems & Structures, 2010, 22(5):401-413.
毛剑琴.智能结构动力学与控制[M].科学出版社, 2013.
MAO J Q. Smart Structure Dynamics and Control[M]. Science Press Co.Ltd., 2013. (in Chinese)
戴文战, 丁良, 杨爱萍.内模控制研究进展[J].控制工程, 2011, 18(4):487-494.
DAI W ZH, DING L, YANG A P. An overview of the development of internal model control[J]. Scientific Journal of Control Engineering, 2011, 18(4):487-494. (in Chinese)
赵志诚, 文新宇.内模控制及其应用[M].北京:电子工业出版社, 2012.
ZHAN ZH CH, WEN X Y. Internal Model Control and Its Application[M]. Beijing:Publishing House Of Electronics Industry, 2012. (in Chinese)
ACKERMANN J. Sampling Control System-Analysis and Synthesis[M]. Berlin:Springer-Verlag, 1983.
刘金琨.系统辨识理论及MATLAB仿真[M].电子工业出版社, 2013.
LIU J K. System Identification Theory and MATLAB Simulation[M]. Publishing House Of Electronics Industry, 2013. (in Chinese)
0
浏览量
385
下载量
12
CSCD
关联资源
相关文章
相关作者
相关机构