浏览全部资源
扫码关注微信
1.北京卫星环境工程研究所, 北京 100094
2.北京市航天产品智能装配技术与装备工程技术研究中心, 北京 100094
[ "胡瑞钦(1988-), 男, 内蒙古呼和浩特人, 工程师, 2010年, 2013年于清华大学分别获得学士、硕士学位, 主要从事机器人力觉、视觉及装配应用方面的研究。E-mail:hrqcast@163.com" ]
[ "隆昌宇(1988-), 男, 山东东营人, 工程师, 2010年, 2015年于天津大学分别获得学士、博士学位, 主要从事精密测量及机器人技术的研究。E-mail:cylong_cast@163.com" ]
收稿日期:2018-04-17,
录用日期:2018-6-27,
纸质出版日期:2018-10-25
移动端阅览
胡瑞钦, 隆昌宇, 张立建. 视觉与力觉结合的卫星部件机器人装配[J]. 光学 精密工程, 2018,26(10):2504-2515.
Rui-qin HU, Chang-yu LONG, Li-jian ZHANG. Robotic assembly technology for satellite components based on visual and force information[J]. Optics and precision engineering, 2018, 26(10): 2504-2515.
胡瑞钦, 隆昌宇, 张立建. 视觉与力觉结合的卫星部件机器人装配[J]. 光学 精密工程, 2018,26(10):2504-2515. DOI: 10.3788/OPE.20182610.2504.
Rui-qin HU, Chang-yu LONG, Li-jian ZHANG. Robotic assembly technology for satellite components based on visual and force information[J]. Optics and precision engineering, 2018, 26(10): 2504-2515. DOI: 10.3788/OPE.20182610.2504.
针对卫星特殊部件的装配需求,为了使机器人具有适用不同工况的柔性并在卫星多变的装配工况中获得较高的应用效率,本文研究视觉引导与力反馈控制下的机器人装配技术,给出一种视觉与力觉结合的机器人装配方案:在装配孔位安装辅助销钉,通过视觉引导将部件引导至销钉的锥面导向范围内,而后在销钉导向下对机器人采用力反馈控制,实现工件的准确装配到位。采用红外相机结合合作靶标的方式实现稳定地视觉识别与目标定位,设计了探针式测量工具,并给出测量方法,实现了目标点位的柔性便捷测量。给出了一种已知空间对应点对条件下,求位姿变换矩阵及机器人目标位姿的计算方法。采用力/位混合控制方法实现柔顺销钉导向控制。实验结果表明:装配对应孔位的测量匹配误差在2.9 mm以内,机器人在视觉引导下,可以将工件运送至销钉的导向范围内,并在销钉导向及力反馈控制下将工件准确装配到位,力控制阈值为30 N。证明了本文所采用的技术可以满足卫星部件装配的工程实施要求。
For the assembly requirements of special satellite components
robot assembly technology based on visual guidance and force feedback control was studied. This technology gives the robot flexibility under different working conditions and offers high application efficiency under variable satellite assembly conditions. A robot assembly scheme that combines visual and force information was presented. Auxiliary pins were installed in mounting holes
a component was guided to the taper area of the pin by the robot using a visual guide
and a force feedback control was applied to the robot. The component was then accurately positioned based on the pin guidance. Infrared cameras and cooperative targets were used to achieve stable visual recognition and target positioning. A probe-type measurement tool was designed and measurement methods were developed to achieve flexible and convenient measurements of target points. A method for calculating the pose transformation matrix and target position of a robot was proposed based on known spatial correspondence point pairs and was used to achieve compliant pin guidance control. Experimental results show that the measurement matching error of the corresponding hole was within 2.9 mm. The robot can convey the component to the pin's guiding range through visual guidance
and the component can be accurately assembled in place through pin guidance and force feedback control. The force control threshold was determined to be 30 N. This technology can meet the engineering implementation requirements for satellite component assembly.
FANG S, HUANG X, CHEN H, et al .. Dual-arm robot assembly system for 3C product based on vision guidance[C]. IEEE International Conference on Robotics and Biomimetics, IEEE , 2017: 807-812. http://ieeexplore.ieee.org/document/7866422/
GU J, WANG H, CHEN W, et al .. Monocular visual object-localization using natural corners for assembly tasks[C]. IEEE International Conference on Robotics and Biomimetics, IEEE , 2017: 1383-1388. http://ieeexplore.ieee.org/document/7866520/
CHANG W C. Robotic assembly of smartphone back shells with eye-in-hand visual servoing[J]. Robotics and Computer-Integrated Manufacturing, 2018, 50:102-113.
TURAN M, ALMALIOGLU Y, ARAUJO H, et al .. A non-rigid map fusion-based direct SLAM method for endoscopic capsule robots[J]. Int J Intell Robot Appl, 2017, 1(4):399-409.
LIN C Y, SON L T, CHANG Y L, et al .. Image-Sensor-Based Fast Industrial-Robot Positioning System for Assembly Implementation[J]. Sensors and Materials, 2017, 29(7):935-945.
QIN Q, ZHU D, TU Z, et al .. Sorting System of Robot Based on Vision Detection[C]. International Workshop of Advanced Manufacturing and Automation. Springer, Singapore , 2017: 591-597. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHDR201704002.htm
DUNAJ J. Positioning of Industrial Robot Using External Smart Camera Vision[C]. International Conference on Systems, Control and Information Technologies 2016. Springer, Cham, 2016: 288-311. https://link.springer.com/chapter/10.1007/978-3-319-48923-0_35
DAGNINO G, GEORGILAS I, TARASSOLI P, et al .. Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery[J]. International journal of computer assisted radiology and surgery, 2016, 11(3):437-455.
XU D, LU J, WANG P, et al .. Partially decoupled image-based visual servoing using different sensitive features[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(8):2233-2243.
SONG H C, KIM M C, SONG J B. USB assembly strategy based on visual servoing and impedance control[C]. International Conference on Ubiquitous Robots and Ambient Intelligence, IEEE , 2015: 114-117. http://ieeexplore.ieee.org/document/7358873/
LIPPIELLO V, CACACE J, SANTAMARIA-NAVARRO A, et al .. Hybrid visual servoing with hierarchical task composition for aerial manipulation[J]. IEEE Robotics & Automation Letters, 2016, 1(1):259-266.
FENG K, ZHANG X, LI H, et al .. A dual-camera assisted method of the SCARA robot for online assembly of cellphone batteries[C]. International Conference on Intelligent Robotics and Applications. Springer, Cham , 2017: 576-587. https://link.springer.com/chapter/10.1007/978-3-319-65292-4_50
GU J, WANG H, CHEN W, et al .. Monocular visual object-localization using natural corners for assembly tasks[C]. IEEE International Conference on Robotics and Biomimetics, IEEE , 2017: 1383-1388.
NERAKAE P, UANGPAIROJ P, CHAMNIPRASART K. Using machine vision for flexible automatic assembly system[J]. Procedia Computer Science, 2016, 96:428-435.
MILLARD A G, HILDER J A, TIMMIS J, et al .. A low-cost real-time tracking infrastructure for ground-based robot swarms[C]. Swarm Intelligence: 9th International Conference, ANTS 2014, Proceedings. Springer , 2014, 8667: 278. http://eprints.uwe.ac.uk/26144/
WAN W, LU F, WU Z, et al .. Teaching robots to do object assembly using multi-modal 3-d vision[J]. Neurocomputing, 2017, 259:85-93.
WU C H, JIANG S Y, SONG K T. CAD-based pose estimation for random bin-picking of multiple objects using a RGB-D camera[C]. Control, Automation and Systems (ICCAS), 201515th International Conference on, IEEE , 2015: 1645-1649. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7364621
HONGAN N. Impedance Control: An Approach To Manipulation[C]. American Control Conference , 2009, 107(4): 481-9. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4788393
KAZEROONI H, HOUPT P K, SHERIDAN T B. Robust Compliant Motion for Manipulators[J].IEEE J Robotic Automat, 1986, 2(2):83-105.
FOCCHI M, MEDRANO-CERDA G A, BOAVENTURA T, et al .. Robot impedance control and passivity analysis with inner torque and velocity feedback loops[J]. Control Theory and Technology, 2016, 14(2):97-112.
RAIBERT M H, CRAIG J J.Hybrid position/force control of manipulators[J]. Journal of Dynamic Systems Measurement and Control, 1981, 103(2):126-133.
陈钢, 王玉琦, 贾庆轩, 等.机器航天员轴孔装配过程中的力位混合控制方法[J].宇航学报, 2017, 38(4):410-419.
CHEN G, WANG Y Q, JIA Q X, et al .. Hybrid force and position control strategy of robonaut performing peg-in-hole assembly task[J]. Yuhang Xuebao/journal of Astronautics, 2017, 38(4):410-419. (in Chinese)
CHAUDHARY H, PANWAR V, PRASAD R, et al .. Adaptive neuro fuzzy based hybrid force/position control for an industrial robot manipulator[J]. Journal of Intelligent Manufacturing, 2014, 27(6):1299-1308.
肖丽芳.基于光纤力传感器的机器人针穿刺阻抗控制研究[D].北京: 北京交通大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10004-1017043463.htm
XIAO L F. Research on Impedance Control of Robotic Needle Insertion with a Fiber Optic Force Sensor [D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese)
KIM S, KIM J P, RYU J. Adaptive energy-bounding approach for robustly stable interaction control of impedance-controlled industrial robot with uncertain environments[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(4):1195-1205.
常健, 王亚珍, 李斌.基于力/位混合算法的7自由度机器人精细操控方法[J].机器人, 2016, 38(5):531-539.
CHANG J, WANG Y Z, LI B. Accurate Operation Control Method Based on Hybrid Force/Position Algorithm for 7-DOF Manipulator[J]. Robot, 2016, 38(5):531-539. (in Chinese)
CONDURACHE D, BURLACU A. Orthogonal dual tensor method for solving the AX=XB sensor calibration problem[J]. Mechanism and Machine Theory, 2016, 104:382-404.
胡瑞钦, 张立建, 孟少华, 等.基于柔顺控制的航天器大部件机器人装配技术[J].机械工程学报, 2016, 55(11):85-93.
HU R Q, ZHANG L J, MENG S H, et al .. Robotic Assembly Technology for Heavy Component of Spacecraft based on Compliance Control[J]. JOURNAL OF MECHANICAL ENGINEERING, 2016, 55(11):85-93.(in Chinese)
0
浏览量
122
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构