浏览全部资源
扫码关注微信
合肥工业大学 机械工程学院, 安徽 合肥 230009
[ "王勇(1969-), 男, 安徽肥东人, 2008年于合肥工业大学获得博士学位, 现为合肥工业大学教授, 博士生导师, 主要研究方向为机械设计、传感及测试技术。E-mail:simenkouwang@sina.com" ]
[ "刘和亮(1993-), 男, 安徽安庆人, 硕士研究生, 主要研究方向为机械结构设计、传感器的开发与标定。E-mail:liuhelianglhl@sina.com" ]
收稿日期:2010-02-06,
录用日期:2018-4-2,
纸质出版日期:2018-10-25
移动端阅览
王勇, 刘和亮, 刘正士, 等. 二级杠杆式微牛级微力发生机构[J]. 光学 精密工程, 2018,26(10):2527-2535.
Yong WANG, He-liang LIU, Zheng-shi LIU, et al. Design and functional analysis of a micro-Newton force generator[J]. Optics and precision engineering, 2018, 26(10): 2527-2535.
王勇, 刘和亮, 刘正士, 等. 二级杠杆式微牛级微力发生机构[J]. 光学 精密工程, 2018,26(10):2527-2535. DOI: 10.3788/OPE.20182610.2527.
Yong WANG, He-liang LIU, Zheng-shi LIU, et al. Design and functional analysis of a micro-Newton force generator[J]. Optics and precision engineering, 2018, 26(10): 2527-2535. DOI: 10.3788/OPE.20182610.2527.
针对力传感器标定系统难以精确加载微牛级微力的现状,设计了一种二级杠杆式微力发生机构。首先,在比较了常用柔性铰链精度性能的基础上,介绍了微力发生机构的工作原理。然后,在考虑杆件变形和柔性铰链中心偏转的基础上,分析了各级杠杆和各柔性铰链的受力和能量传递情况,推导了二级杠杆式微力发生机构力缩小倍数的理论计算方法,并以实现某一力缩小倍数为设计目标,据此提出了微力发生机构的优化设计方法。接着,进行有限元仿真分析,得到了不同输入力下的力值响应特性。最后搭建了微力发生机构的性能实验测试平台。结果表明,有限元分析、实验结果与理论力值间的最大误差分别为5.501%和7.391%,实验非线性误差为2.89%,可实现0~500
μ
N的微力加载。认为力缩小倍数满足设计要求,验证了采用该优化设计方法准确设计二级杠杆式力柔顺机构、提高微力加载精度的有效性。
A two-stage lever-type micro-force generator was designed to address the challenges in the calibration system of force sensor to provide accurate micro loads. Initially
the working principle of the micro-force generator was introduced based on the performance comparison among general flexure hinges. Next
the force and energy transmissions were analyzed and a theoretical calculation method to evaluate the minification ratio K was deduced by taking into consideration the deformation of the lever and the offset of the flexure hinge's rotation. To accomplish the aim of achieving a certain minification ratio
the optimization design of the micro-force generator was proposed. Moreover
the response characteristics under different input forces were obtained by performing finite element simulation. Subsequently
a test platform was fabricated to measure the power performance of the micro-force generator. The results show that the largest error between the finite element analysis (FEA) and the theoretical analysis result is 5.501%
whereas that between the experimental result and the theoretical analysis result is 7.391%
the linearity is 2.89%
and loading range of up to 500
μ
N is reached. The results also indicate that the minification ratio K meets the design requirements and verify the validity of applying the optimization method to design two-stage lever-type micro-force generator and improve the accuracy of micro-Newton loads.
HU S, WANG Y, LIU Z, et al .. Exploration of measurement principle of a three-dimensional current sensor for measuring the upwelling[J]. Ocean Engineering, 2016, 127:48-57.
LAW J, SUN W, WU Z, et al .. A low-cost reusable micro-newton scale micro-thruster[C]. International Conference on Solid-State Sensors, Actuators and Microsystems . 2017: 2055-2058.
LIN G, PALMER R E, PISTER K S, et al ..Miniature heart cell force transducer system implemented in MEMS technology[J]IEEE Transactions on Biomedical Engineering, 2001, 48(9):996-1006.
XIE H, VITARD J, HALIYO S, et al ..Enhanced accuracy of force application for AFM nanomanipulation using nonlinear calibra-tion of the optical lever[J].IEEE Sensors Journal, 2008, 8(8):1478-1485.
ALVO S, LAMBERT P, GAUTHIER M, et al ..A van der waals force-based adhesion model for micromanipulation[J]. Journal of Adhesion Science and Technology, Special Issue on Adhesion in MEMS/NEMS, 2010, 15-1(24):2415-2428.
HALIYO S, DIONNET F, RÉGNIER S. Controlled rolling of micro objects for autonomous micro manipulation[J]. International Journal of Micromechatronics, 2006, 3(2):75-101.
JIN W, MOTE C D. On the calibration of multicomponent microforce sensors[J]. Microelectromechanical Systems Journal of, 1998, 7(2):156-163.
MOHAND OUSAID A, HALIYO S, REGNIER S, et al ..Micro-Force sensor by active control of a comb-drive[J]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2013, 8212:612-617.
YUVAL C, SHAY K, DANIEL L, et al ..Electrostatic parallel plate actuators whose moving elements are driven only by electrostatic force and methods useful in conjunction therewith[P].US: EP2768241 A1.2014. http://www.wanfangdata.com.cn/details/detail.do?_type=patent&id=CA2792741A
NEWELL D B, KRAMAR J A, PRATT J R, et al ..The NIST microforce realization and measurement project[J]. IEEE Transactions on Instrumentation and Measurement, 2003, 52(2):508-511.
PRATT J R, KRAMAR J A. Si Realization of small forces using an electrostatic force balance[C]. XVIII IMEKD World Congress on Metro logy for a Sustainable Development, Rio de Janeiro, Brazil , 2006: 109.
LI X, SU D, ZHANG Z. A novel technique of microforce sensing and loading[J]. Sensors & Actuators A Physical, 2009, 153(1):13-23.
王相龙.传感器原位标定系统稳定加载关键技术研究[D].吉林大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10183-1015591468.htm
WANG X L. Research on Key Technology Based on Stable Loading for the In-situ Calibration System of the Sensor [D].Jilin: Jilin University, 2015. (in Chinese)
SUN Z, HAO L, LI S, et al .. A PVDF micro-force sensor based on inverse-model algorithm and its applications[C]. IEEE International Conference on Information and Automation, IEEE , 2011: 801-806. http://ieeexplore.ieee.org/document/5949104/
郑红梅, 刘正士, 王勇.机器人六维腕力传感器标定方法和标定装置的研究[J].计量学报, 2005, 26(1):43-45.
ZHENG H M, LIU ZH SH, WANG Y.Study on the method of dynamic characteristic calibration of the 6-aixs wrist force sensor for robot[J]. Acta Metrologica Sinica, 2005, 26(1):43-45. (in Chinese)
JABBOUR Z L, YANIV S L. The kilogram and the measurements of mass and force[J]. J. Res. Nat. Inst. Stand. Technol, 2001, 106(1):25-46.
黄斌.基于气浮原理的多维力标定方法及系统的研究[D].合肥工业大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10359-1013260207.htm
HUANG B. Multi-axis force calibration method and system based on the flotation principle [D]. Hefei University of Technology, 2012. (in Chinese)
卢倩, 黄卫清, 王寅, 等.深切口椭圆柔性铰链优化设计[J].光学 精密工程, 2015, 23(1):206-215.
LU Q, HUANG W Q, WANG Y, et al ..Optimaizatrion design of deep-notch elliptical flexure hinges[J] .Opt. Precision Eng., 2015, 23(1):206-215.(in Chinese)
付锦江, 颜昌翔, 等.椭圆弧柔性铰链刚度简化计算及优化设计[J].光学 精密工程, 2016, 7(24), 1703-1710.
FU J J, YAN CH X, et al ..Stiffness calculation and optimal design of elliptical flexure hinges[J].Opt. Precision Eng., 2016, 7(24), 1703-1710. (in Chinese)
曹毅, 刘凯, 单春成, 等.抗拉柔性铰链的理论建模及有限元分析[J].光学 精密工程, 2016, 24(1):119-125.
CAO Y, LIU K, SHAN CH CH, et al ..Theory modeling and finite element analysis of tensile flexure hinge[J].Opt. Precision Eng., 2016, 24(1):119-125. (in Chinese)
左行勇, 刘晓明, 等.三种形状柔性铰链转动刚度的计算与分析[J].仪器仪表学报, 2006, 27(12):1725-1728.
ZUO X Y, LIU X M, et al ..Calculation and analysis of rotational stiffness for three types of flexure hinges[J].Chinese Journal of Scientific Instrument, 2006, 27(12):1725-1728. (in Chinese)
蔡雪, 赵美蓉, 郑叶龙, 等.用于10 -6 N~10 -5 N微力测量的柔性铰链机构设计[J].传感技术学报, 2014(11):1451-1456.
CAI X, ZHAO M R, ZHENG Y L, et al .. Design of flexure hinges mechanism for 10-6 N~10-5 N micro force measurement[J]. Chinese Journal of Sensors and Actuators, 2014(11):1451-1456. (in Chinese)
刘敏, 张宪民.基于类Ⅴ型柔性铰链的微位移放大机构[J].光学 精密工程, 2017, 25(4):999-1008.
LIU MIN, ZHANG X M, Micro-displacement amplifier based on quasi-Ⅴ-shaped flexure hinge[J].Opt. Precision Eng., 2017, 25(4):999-1008. (in Chinese)
PAROS J. How to design flexure hinges[J]. Mach Des, 1965, 37:151-156.
WU Y, ZHOU Z. Design calculations for flexure hinges[J]. Review of Scientific Instruments, 2002, 73(8):3101-3106.
0
浏览量
200
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构