浏览全部资源
扫码关注微信
1.中国科学院国家授时中心 时间频率基准重点实验室, 陕西 西安 710600
2.中国科学院大学 天文与空间科学学院, 北京 100049
[ "任洁(1986-), 女, 陕西西安人, 硕士, 工程师, 2008年于西安邮电学院获得学士学位, 2013年于中国科学院大学获得硕士学位, 主要从事锶原子光频标方面的研究。E-mail:raphael_pp@126.com" ]
[ "常宏(1977-), 男, 山西太原人, 研究员, 博士生导师, 2000年、2005年于山西大学分别获得学士、博士学位。2005年至2007年在法国国家科研中心进行博士后研究, 助理研究员, 主要从事锶原子光频标方面的研究。E-mail:changhong@ntsc.ac.cn" ]
收稿日期:2018-04-04,
录用日期:2018-5-23,
纸质出版日期:2018-10-25
移动端阅览
任洁, 卢晓同, 王叶兵, 等. 锶原子光钟闭环控制系统的设计与实现[J]. 光学 精密工程, 2018,26(10):2546-2554.
Jie REN, Xiao-tong LU, Ye-bing WANG, et al. Design and realization of an auto-control system for the closed-loop operation of a strontium atomic clock[J]. Optics and precision engineering, 2018, 26(10): 2546-2554.
任洁, 卢晓同, 王叶兵, 等. 锶原子光钟闭环控制系统的设计与实现[J]. 光学 精密工程, 2018,26(10):2546-2554. DOI: 10.3788/OPE.20182610.2546.
Jie REN, Xiao-tong LU, Ye-bing WANG, et al. Design and realization of an auto-control system for the closed-loop operation of a strontium atomic clock[J]. Optics and precision engineering, 2018, 26(10): 2546-2554. DOI: 10.3788/OPE.20182610.2546.
为了实现
87
Sr原子光钟的闭环运行,根据将超稳激光频率锁定在钟跃迁超精细能级自旋极化谱双峰中间的锁频原理,设计和实现了锶原子光钟闭环控制系统。首先,详细分析了
87
Sr原子光钟闭环运行的具体需求,包括冷原子制备及钟跃迁探测、闭环锁定等阶段中所需要的控制信号及其时序;然后,根据该需求设计了时序控制和频率控制的物理系统;最后,利用LabVIEW虚拟仪器开发平台和NI硬件系统设计了
87
Sr原子光钟的闭环运行的自动化控制程序。实验结果显示,采样时间为3 000 s的光钟频率稳定度为5.7×10
-17
,拟合得到的环内稳定度为5×10
-15
/τ
1/2
,表明该控制系统的精度符合锶原子光钟的闭环运行要求。
An auto-control system was designed and realized for the closed-loop operation of a strontium atomic clock. This closed-loop operation locked an ultra-stable laser to a frequency obtained by averaging two peaks of the spin-polarized spectrum of the hyperfine energy structure of an isotope of
87
Sr. Firstly
the requirements for automatic control of the closed-loop operation of the
87
Sr atomic clock were specified
including the controlling signals and their time sequences during laser cooling and trapping of the atoms
the detection of the clock transition spectrum
and the closed-loop operation. Secondly
these specified requirements lead to the design of the physical systems. Finally
the auto-control program was designed using LabVIEW
and data acquisition hardware from National Instruments. The measurements of the frequency stability demonstrated that the in-loop frequency instability is approximately 5×10
-15
/τ
1/2
and the frequency instability for 3 000 seconds of sampling time is 5.7×10
-17
. These results demonstrate that the designed auto-control system meets the requirements of a strontium atomic clock for closed-loop operation.
KOLKOWITZ S, BROMLEY S L, BOTHWELL T, et al.. Spin-orbit-coupled fermions in an optical lattice clock[J]. Nature, 2017, 542(7639):66-70.
BLOOM B J, NICHOLSON T L, WILLIAMS J R, et al.. An optical lattice clock with accuracy and stability at the 10(-18) level[J]. Nature. 2014, 506(7486):71-75.
HINKLEY N, SHERMAN J A, PHILLIPS N B, et al.. An atomic clock with 10(-18) instability[J]. Science, 2013, 341(6151):1215-1218.
NICHOLSON T L, CAMPBELL S L, HUTSON R B, et al.. Systematic evaluation of an atomic clock at 2×10 -18 total uncertainty[J]. Nature Communication, 2015, 6:6896.
USHIJIMA I, TAKAMOTO M, DAS M, et al.. Cryogenic optical lattice clocks[J]. Nature Photonics, 2015, 9(3):185-189.
BLATT S, LUDLOW A D, CAMPBELL G K, et al.. New Limits on Coupling of Fundamental Constants to Gravity Using 87Sr Optical Lattice Clocks[J]. Physical Review Letters, 2008, 100(14):140801.
GODUN R M, NISBET-JONES P B R, JONES J M, et al.. Frequency Ratio of Two Optical Clock Transitions in 171Yb+ and Constraints on the Time Variation of Fundamental Constants[J]. Physical Review Letters, 2014, 113(21):210801.
HUNTEMANN N, LIPPHARDT B, TAMM C, et al.. Improved Limit on a Temporal Variation of mp/me from Comparisons Yb+ and Cs Atomic Clocks[J]. Physical Review Letters, 2014, 113(21):210802.
KOLKOWITZ S, PIKOVSKI I, LANGELLIER N, et al.. Gravitational wave detection with optical lattice atomic clocks[J]. Physical Review D, 2016, 94(12):124043.
DEREVIANKO A, POSPELOV M. Hunting for topological dark matter with atomic clocks[J]. Nature Physics, 2014, 10(12):933-936.
LUDLOW A D, BOYD M M, YE J, et al.. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2):637-701.
杰弗里特拉维斯, 吉姆克林. LabVIEW大学实用教程[M].第三版, 乔瑞萍译.北京: 电子工业出版社, 2011, 111-310.
TRAVIS J, KRINF J. LabVIEW for Everyone [M]. 3rd edition. QIAO R P Transl. Beijing: Publishing House of Electronics Industry Press, 2011, 111-310. (in Chinese)
任洁, 刘辉, 卢本全, 等.锶原子光钟钟跃迁谱线探测中的程序控制[J].光学 精密工程. 2016, 24(1):50-58.
REN J, LIU H LU B Q, et al.. Program control in transition observation of strontium optical lattice clock[J]. Editorial Office of Optics and Precision Engineer, 2016, 24(1):50-58. (in Chinese)
METCALF H J, VAN DER STRATEN P. Laser cooling and trapping of neutral atoms[J]. The Optics Encyclopedia, 2007.
OVSIANNIKOV VD, PAL'CHIKOV VG, TAICHENACHEV AV, et al.. Magic-wave-induced 1S0-3P0 transition in even isotopes of alkaline-earth-metal-like atoms[J]. Physical Review A, 200775(2):020501.
YU D, CHEN J. Optical Clock with Millihertz Linewidth Based on a Phase-Matching Effect[J]. Physical Review Letters, 2007, 98(5):050801.
CAMPBELL G K, LUDLOW A D, BLATT S, et al.. The absolute frequency of the 87Sr optical clock transition[J]. Metrologia, 2008, 45(5):539-548.
RAAB E L, PRENTISS M, CABLE A, et al.. Trapping of neutral sodium atoms with radiation pressure[J]. Physical Review Letters, 1987, 59(23), 2631-2634.
任洁, 田晓, 刘辉, 等.锶原子光钟中repumping光频率锁定系统的研制[J].量子光学学报, 2013, 19(2):106-115.
REN J, TIAN X, LIU H, et al.. The system of the repumping lasers' frequency stabilization in strontium optical clock[J]. Acta Sinica Quantum Optica, 2013, 19(2):106-115. (in Chinese)
高峰, 常宏, 王心亮, 等.锶原子Doppler冷却中再抽运光对原子俘获影响的理论和实验研究[J].物理学报, 2011, 60(5):133-139.
GAO F, CHANG H, WANG X L, et al.. The theoretical and experimental investigation of repumping laser impact on cooling and trapping of strontium atoms[J]. Acta Physica Sinica, 2011, 60(5):133-139. (in Chinese)
MUKAIYAMA T, KATORI H, IDO T, et al.. Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature[J]. Physical Review Letters, 2003, 90(11):113002.
田晓, 王叶兵, 卢本全, 等.锶玻色子的"魔术"波长光晶格装载实验研究[J].物理学报, 2015, 64(13):40-47.
TIAN X, WANG Y B, LU B Q, et al.. Experimental research on loading strontium bosons into the optical lattice operating at the "magic" wavelength[J]. Acta Physica Sinica, 2015, 64(13):40-47. (in Chinese)
AKATSUKA T, TAKAMOTO M, KATORI H. Optical lattice clocks with non-interacting bosons and fermions[J]. Nature Physics, 2008, 4(12):954-959.
LUDLOW A D, HUANG X, NOTCUTT M, et al.. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10 -15 [J]. Optics letters, 2007, 32(6):641-3.
XU Q, LIU H, LU B Q, et al.. Observation of 1S0-3P0 transition of bosonic strontium in the Lamb-Dicke regime[J]. Chinese Optics Letters, 2015, 13(10):100201-100205.
LU B Q, WANG Y B, HAN J X, et al.. Exploration of the magnetic-field-induced $5s5p$ 3P0-5s21S0 forbidden transition in bosonic Sr atom[J]. Journal of Physics Communications, 2017, 1(5):055017.
BOYD M M, ZELEVINSKY T, LUDLOW A D, et al.. Nuclear spin effects in optical lattice clocks[J]. Physical Review A, 2007, 76(2):022510.
郭阳, 尹默娟, 徐琴芳, 等.锶原子光晶格钟自旋极化谱线的探测[J].物理学报, 2018, 67(7):070601.
GUO Y, YIN M, XU Q F, et al.. Interrogation of spin polarized clock transition in strontium optical lattice clock[J]. Acta Physica Sinica, 2018, 67(7):070601. (in Chinese)
WANG Y B, YIN M J, REN J, et al.. Strontium optical lattice clock at the National Time Service Center[J]. Chin Phys B, 2018, 27(2):023701.
0
浏览量
174
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构