浏览全部资源
扫码关注微信
1.长光卫星技术有限公司, 吉林 长春 130033
2.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
[ "韩冰(1982-), 女, 山东兖州人, 博士, 助理研究员, 2007年、2011年于北京理工大学分别获得硕士、博士学位, 主要从事遥感图像处理、目标自动识别与跟踪方向的研究。E-mail:334679010@qq.com" ]
[ "牟忠锋(1975-), 男, 吉林长春人, 硕士, 副研究员, 2003年于北京师范大学获得硕士学位, 主要从事遥感图像处理与应用方向的研究。E-mail:13911799042@qq.com" ]
[ "乐小峰(1981-), 男, 四川乐山人, 硕士, 助理研究员, 2006年于北京理工大学获得硕士学位, 主要从事遥感图像处理与应用、海量遥感影像数据管理等方向的研究。E-mail:34828963@qq.com" ]
收稿日期:2018-02-10,
录用日期:2018-4-23,
纸质出版日期:2018-10-25
移动端阅览
韩冰, 牟忠锋, 乐小峰, 等. 归一化互相关中计算基准子图能量的快速递推[J]. 光学 精密工程, 2018,26(10):2565-2574.
Bing HAN, Zhong-feng MU, Xiao-feng LE, et al. Fast recurrence algorithm for computing sub-Image energy using normalized cross correlation[J]. Optics and precision engineering, 2018, 26(10): 2565-2574.
韩冰, 牟忠锋, 乐小峰, 等. 归一化互相关中计算基准子图能量的快速递推[J]. 光学 精密工程, 2018,26(10):2565-2574. DOI: 10.3788/OPE.20182610.2565.
Bing HAN, Zhong-feng MU, Xiao-feng LE, et al. Fast recurrence algorithm for computing sub-Image energy using normalized cross correlation[J]. Optics and precision engineering, 2018, 26(10): 2565-2574. DOI: 10.3788/OPE.20182610.2565.
景象匹配对匹配算法的运行速度和内存占用均要求较高。为提升归一化互相关算法的运行速度并降低其内存占用率,本文重点对其中的基准子图能量计算步骤进行了加速研究。经过详细分析,积分图法具有灵活、快速的优点,但缺陷为其在快速计算的同时需花费较大内存,并不适合直接应用在嵌入式系统中。本文提出了一种快速递推算法。该算法利用相邻像素值的能量进行连续递推,计算时可以不必像积分图法那样给所有的图像能量都分配空间,只需预留1行的像素空间便能完成整个能量计算过程。实验结果表明:在时间花费方面,快速递推法具有和积分图法相当的运算速度,耗时均只为传统归一化互相关算法的1/2;在内存占用率方面,快速递推法约为积分图法的1/3以下,且实时图尺寸越大,快速递推法占用的内存越小。综上所述,在归一化互相关算法中利用经典积分图法和本文提出的快速递推法计算基准子图能量,均较传统NCC算法有所加速,两种算法各具优点,经典积分图法快速、灵活,适用于对速度要求高,但对内存占用率要求不太高的应用场景;而快速递推法快速、省内存,更适用于嵌入式系统的应用。
Scene matching requires higher matching speed and memory usage. In order to improve the running speed of the normalized cross correlation algorithm and reduce its memory occupancy rate
this paper focus on researching the steps of fast calculating sub-image's energy. After detailed analysis
the integral graph method has the advantages of flexible and rapid
but the defect is that it needs to spend a lot of memory at the same time
while it is not suitable for the embedded system. Therefore
a fast recurrence method was proposed. In this method
the energy of adjacent pixel values is used to continuously recursive compute. It is not necessary to allocate space for all image energy as the integral image method in the calculation process. Only one row of space can be reserved for the entire energy calculation process in fast recurrence method
which greatly saves the memory usage. The fast recurrence method has the equivalent calculation speed with the integral image method
and the time consuming is only 1/2 of the traditional normalization cross correlation algorithm. In the memory occupancy rate
the fast recurrence method is less than 1/3 of the integral image method
and the larger the size of the real-time graph
the less memory occupied by the fast delivery method. In the normalized cross correlation algorithm
the classical integral graph method and the fast recursive method proposed in this paper are used to calculate the energy of the sub-image's energy
which are both faster than the traditional NCC algorithm. The two algorithms have their advantages. The classical integration image method is fast and flexible
which is suitable for the application scene with high speed requirements
but the memory occupancy rate is not very high. The fast recursive method is fast and saves memory
and is more suitable for the application of embedded systems.
TSAI D M, LIN C T. Fast normalized cross correlation for defect detection[J]. Pattern Recognition, 2003, 24, 2625-2631.
徐伟, 陈彦彤, 朴永杰, 等.基于吉林一号遥感图像的星载目标快速识别系统[J].光学 精密工程, 2017, 25(1):255-262.
XU W, CHEN Y T, PIAO Y J, et al.. Target fast matching recognition of on-board system based on Jilin-1 satellite image[J]. Optics and Precision Engineering, 2017, 25(1):255-262. (in Chinese)
张浩鹏.基于互相关计算加速器的实时目标跟踪系统设计与实现[D].浙江大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10335-1014193685.htm
ZHANG H P. Design and implementation of real-time target tracking system based on intercorrelation computing accelerators [D]. Zhejiang University, 2014. (in Chinese)
HⅡ A J H, HANN C E, CHASE J G, et al.. Fast normalized cross correlation for motion tracking using basis functions[J]. Computer Methods and Programs in Biomedicine, 2006, 82(2):144-156.
ARMELLONI E, GIOTTOLI C, FARINA A, et al.. Implementation of realtime partitioned convoluti-on on a DSP board[C]. 2003 I EEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY , 2003.10, 19-22. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1285822
田立, 周付根, 孟偲, 等.互相关跟踪算法的多核DSP快速实现[J].高技术通讯, 2013, 23(12):1248-1253.
TIAN L, ZHOU F G, MENG S, et al.. Fast implementation of multi-core DSP for intercorrelation tracking algorithm[J]. High-tech Communications, 2013, 23(12):1248-1253.(in Chinese)
刘毅飞, 张旭明, 丁明跃.归一化互相关灰度图像匹配的多核信号处理器实现[J].计算机应用, 2011, 31(12):3334-3336.
LIU Y F, ZHANG X M, DING M Y. Implementation of a Multicore Signal Processor for Normali-zed Intercorrelation Grayscale Image Matching[J]. Computer Application, 2011, 31(12):3334-3336.(in Chinese)
JAE C Y, HAN T Y. Fast normalized cross-correlation[J]. Circuits, Systems and Signal Processing, 2009, 28:819-843.
ARIE N, ALLEN T. A new distance measure based on generalized Image Normalized Cross-Correlation for robust video tracking and image recognition[J]. Pattern Recognition Letters, 2013, 34(3).
LEWIS J P, Fast normalized cross-correlation[J]. in Proceedings of Vision Interface, 1995, 120-123.
FRANKLIN C CROW. Summed-area tables for texture mapping[J]. Computer Graphics, 1984, 18(3).
PAUL VIOLA, MICHEAL J JONES, Robust real-time face detection[J]. International Journal of Co-mputer Vision, 2004, 57(2):137-154.
卢宇, 卢荣胜, 郭广平, 等.基于快速归一化算法的拉伸距离动态跟踪测量[J].传感技术学报, 2016, 29(9):1328-1334.
LU Y, LU R S, GUO G P, et al.. Dynamic tracking measurement of stretching distance based on fast normalization algorithm[J]. Journal of sensing technology, 2016, 29(9):1328-1334.(in Chinese)
陈冰倩.基于CPU的归一化互相关算法波前斜率技术研究[D].中国科学院研究生院(光电技术研究所), 2016.
CHEN B Q. Research on wavefront slope based on normalized cross correlation algorithm based on CPU [D]. Graduate University of Chinese Academy of Sciences (Institute of Optoelectronic Technology), 2016.(in Chinese)
0
浏览量
236
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构