浏览全部资源
扫码关注微信
1.浙江大学 流体动力与机电系统国家重点实验室, 浙江 杭州 310027
2.中车株洲电力机车研究所有限公司, 湖南 株洲 412001
[ "曾祥(1989-), 男, 湖南株洲人, 博士研究生, 2012年于武汉大学获得学士学位, 主要从事超声检测及自动化方面的研究。E-mail:zzjjuu0104@163.com" ]
[ "杨辰龙(1974-), 男, 山西运城人, 博士, 副教授, 1999年、2002年于太原科技大学分别获得学士、硕士学位, 2005年于浙江大学获得博士学位, 主要从事复合材料超声检测及成像方面的研究。E-mail:yclzju@163.com" ]
收稿日期:2018-03-30,
录用日期:2018-4-25,
纸质出版日期:2018-11-25
移动端阅览
曾祥, 杨辰龙, 周晓军, 等. 小孔隙率碳纤维复合材料的富树脂超声检测[J]. 光学 精密工程, 2018,26(11):2732-2743.
Xiang ZENG, Chen-long YANG, Xiao-jun ZHOU, et al. Ultrasonic detection of rich-resin in low-porosity CFRP[J]. Optics and precision engineering, 2018, 26(11): 2732-2743.
曾祥, 杨辰龙, 周晓军, 等. 小孔隙率碳纤维复合材料的富树脂超声检测[J]. 光学 精密工程, 2018,26(11):2732-2743. DOI: 10.3788/OPE.20182611.2732.
Xiang ZENG, Chen-long YANG, Xiao-jun ZHOU, et al. Ultrasonic detection of rich-resin in low-porosity CFRP[J]. Optics and precision engineering, 2018, 26(11): 2732-2743. DOI: 10.3788/OPE.20182611.2732.
针对孔隙率接近0的小孔隙率碳纤维复合材料(Carbon Fiber Reinforced Composite,CFRP)的富树脂检测需求,提出富树脂超声检测技术。对超声检测信号中的噪声消除方法、衰减抑制方法和富树脂检测的多视图成像技术进行研究,并开发小孔隙率CFRP富树脂超声检测软件。首先提出共振频率估计方法,通过低通滤波抑制高频随机噪声。其次根据频率差异,应用变分模态分解算法分离并消除共振结构噪声,提取低频成分。该低频成分包括表面回波、底面回波、富树脂反射信号和由层间反射信号、材料散射噪声等构成的相干噪声。再次,引入瞬时幅值比修正低频成分的幅值衰减并描述被检测小孔隙率CFRP的局部反射能力。最后,应用Otsu多阈值方法自适应获得富树脂识别的阈值,消除相干噪声的影响,完成富树脂识别。进一步对小孔隙率CFRP的超声检测结果进行多视图成像,在三维视图、C扫描视图和B扫描视图内识别富树脂。结果表明:变分模态分解的分量数为2,Otsu多阈值的类别数为3时,能够准确识别小孔隙率CFRP超声检测信号中的富树脂反射信号;采用0.15作为多视图成像的阈值,可简洁有效地描述富树脂在小孔隙率CFRP中的分布。
To satisfy the demand of rich-resin defect detection in the so-called low-porosity carbon fiber reinforced composite (CFRP) with porosity close to zero
an ultrasonic testing methodology was proposed in this article. The denoising methods
attenuation suppression method
and 3D imaging technology for rich-resin identification are investigated
and low-porosity CFRP rich-resin detection software was developed. The rich resin was detected in four steps. First
the resonant frequency was estimated
and the high-frequency stochastic noise was suppressed. Second
variational mode decomposition (VMD) was used to separate the resonant structure noise and extract the low-frequency component. The low-frequency component consisted of the front-wall echo
back-wall echo
rich-resin reflection signal
and remaining coherent noise made up of the interlayer reflection signals and material scattering noise. Third
the instant amplitude ratio was introduced to correct the envelop attenuation of the low-frequency component and describe the local reflectivity of the low-porosity CFRP. Finally
the multi-threshold Otsu method was used to search the threshold of the rich-resin detection
resulting in the elimination of interference and finishing the detection of rich resin. Further
multi-view imaging was performed on the test results
and the rich resin was identified in the 3D
C-scan
and B-scan imaging processes. The experimental results show that when the VMD mode was set to two and the classes in the multi-threshold Otsu method are set to three
a rich-resin reflection signal can be detected. When the threshold in the multi-view imaging is set to 0.15
the rich resin can be effectively characterized.
周正干, 肖鹏, 刘航航.航空复合材料先进超声无损检测技术[J].航空制造技术, 2013, 424(4):38-43.
ZHOU ZH G, XIAO P, LIU H H. Advanced ultrasonic testing technology for aviation composites[J]. Aeronautical Manufacturing Technology , 2013, 424(4):38-43.(in Chinese)
路士增, 林兰波, 姜明顺, 等.基于光纤光栅传感器的复合材料损伤识别系统[J].光学 精密工程, 2014, 22(11):2894-2901.
LU SH Z, LIN L B, JIANG M SH, et al .. Identification system of composite material damage based on FBG sensor[J]. Opt. Precision Eng ., 2014, 22(11):2894-2901.(in Chinese)
周晓军, 游红武, 程耀东.含孔隙碳纤维复合材料的超声衰减模型[J].复合材料学报, 1997, 14(3):100-107.
ZHOU X J, YOU H W, CHENG Y D. Ultrasonic attenuation model of void contained carbon-fibre reinforced plastic[J]. Acta Materiae Compositae Sinica , 1997, 14(3):100-107.(in Chinese)
LIN L, CHEN J, ZHANG X, et al .. A novel 2-D random void model and its application in ultrasonically determined void content for composite materials[J]. NDT & E International , 2011, 44(3):254-260.
胡宏伟, 李雄兵, 杨岳, 等. CFRP复杂型面构件的孔隙率超声检测方法[J].中南大学学报(自然科学版), 2012, 43(4):1315-1319.
HU H W, LI X B, YANG Y, et al .. Method of inspecting porosity in CFRP with complex surface by ultrasonic[J]. Journal of Central South University(Science and Technology) , 2012, 43(4):1315-1319.(in Chinese)
林莉, 罗明, 郭广平, 等.碳纤维复合材料孔隙率超声声阻抗法检测[J].复合材料学报, 2009, 26(3):105-110.
LIN L, LUO M, GUO G P, et al ..Ultrasonic determination of carbon fiber composite porosity using acoustic impedance[J]. Acta Materiae Compositae Sinica , 2009, 26(3):105-110.(in Chinese)
KIM K B, HSU D K, BARNARD D J. Estimation of porosity content of composite materials by applying discrete wavelet transform to ultrasonic backscattered signal[J]. NDT & E International , 2013, 56:10-16.
LOZAK A, BOLLER C, BULAVINOV A, et al .. Phase statistics and spectral analysis of ultrasonic signals for CFRP component assessment[C]. European Workshop on Structural Health Monitoring , 2014: 2290-2297.
何晓晨, 金士杰, 林莉.超声背散射信号递归定量分析无损表征CFRP孔隙分布仿真[J].复合材料学报, 2018:1-6.
HE X CH, JIN SH J, LIN L. Simulation on non-destructive evaluation of CFRP void distribution with recurrence quantification analysis of ultrasonic back-scatter signals[J]. Acta Materiae Compositae Sinica , 2018:1-6.(in Chinese)
MIENCZAKOWSKI M. Advanced ultrasonic NDE of composite airframe components: physics, modelling and technology [D]. Nottingham: University of Nottingham, 2010.
陈越超, 杨辰龙, 周晓军, 等.厚截面CFRP孔隙超声脉冲反射检测方法[J].振动、测试与诊断, 2016, 36(3):425-431.
CHEN Y CH, YANG CH L, ZHOU X J, et al .. Study of ultrasonic pulse echo method for voids test in thick-section CFRP[J]. Journal of Vibration, Measurement & Diagnosis , 2016, 36(3):425-431.(in Chinese)
HUANG N E, SHEN Z, LONG S R, et al .. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]. Proceedings Mathematical Physical & Engineering Sciences , 1998: 903-995.
DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing , 2014, 62(3):531-544.
申铉京, 刘翔, 陈海鹏.基于多阈值Otsu准则的阈值分割快速计算[J].电子与信息学报, 2017, 39(1):144-149.
SHEN X J, LIU X, CHEN H P. Fast computation of threshold based on multi-threshold Otsu criterion[J]. Journal of Electronics & Information Technology , 2017, 39(1):144-149.(in Chinese)
OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man & Cybernetics , 1979, 9(1):62-66.
0
浏览量
262
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构