浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100039
[ "何煦(1981-),男,博士,副研究员,硕士生导师,主要从事光学系统装调、成像质量评价的研究。E-mail:hexu_ciomp@sina.com" ]
收稿日期:2018-05-02,
录用日期:2018-5-23,
纸质出版日期:2018-11-25
移动端阅览
何煦, 杨雪, 李颐, 等. 大口径空间光学望远镜重力卸载点布局优化方法[J]. 光学 精密工程, 2018,26(11):2764-2775.
Xu HE, Xue YANG, Yi LI, et al. Gravity compensation optimization algorithm for large aperture spatial optical telescope[J]. Optics and precision engineering, 2018, 26(11): 2764-2775.
何煦, 杨雪, 李颐, 等. 大口径空间光学望远镜重力卸载点布局优化方法[J]. 光学 精密工程, 2018,26(11):2764-2775. DOI: 10.3788/OPE.20182611.2764.
Xu HE, Xue YANG, Yi LI, et al. Gravity compensation optimization algorithm for large aperture spatial optical telescope[J]. Optics and precision engineering, 2018, 26(11): 2764-2775. DOI: 10.3788/OPE.20182611.2764.
伴随空间光学载荷口径增大,“天地力学环境不一致”导致光学系统在轨像质严重下降,需要地面装调测试过程卸载重力。但定量的卸载点布局分析、优化方法有待完善。首先研究了大口径光学载荷1
g
重力下变形机理,分别基于位置闭环和受力闭环,建立优化卸载点布局的数学模型,并通过协同仿真获得卸载点布局优化结果。利用仿真卸载实验验证不同卸载参数下,光学载荷的实际卸载效果。基于位置闭环的卸载方法将高敏感光学组件的位恣平均变化量由370
μ
m、36″改善至72.9
μ
m、0.3″,而基于受力闭环卸载方法的最大相对偏差约为7.4%。基于位置闭环的卸载分析方法可获得更接近0
g
的卸载效果,但误差敏度极高,不易工程实现。基于受力闭环的卸载方法总卸载率约75%,对卸载残差的敏感度相对较低,可满足半物理仿真实验对力学环境的模拟需求。
Following the increase in the aperture of space optical telescopes
the inconsistency in space and ground mechanical environment results in serious degradation of the system image quality in orbit. Gravity needs to be compensated during the alignment and test procedure of a space telescope. However
quantitative analysis and optimization methods for unloading the point coordinate have not been completely developed. First
the deformation mechanism of a large-aperture telescope under 1g gravity was studied. According to the separate closed-loop location and closed-loop mass
a mathematical algorithm was developed to optimize the position of the unloading points. By performing co-simulation
we were able to optimize the coordinates. Subsequently
simulation experiments were performed to verify the actual effect of the telescope model under different unloading parameters. The closed-loop location analysis method improves the displacement of the highly sensitive optical components from 370
μ
m
36″ to 72.9
μ
m
0.3″. The maximum relative deviation of the closed-loop mass method from the set value is approximately 7.4%. The closed-loop location gravity-compensation method can achieve a value closer to 0
g
. However
its error sensitivity is high
and realizing the engineering results is difficult. The total unloading rate is approximately 75% based on the closed-loop mass gravity-compensation model
and the sensitivity is low. This model can satisfy the demand for mechanical environment of semi-physical simulation experiments using gravity unloading.
杨帅, 沙巍, 陈长征, 等.空间相机碳纤维框架的设计与优化[J].光学 精密工程, 2017, 25(3):697-705.
YAHG SH, SHA W, CHEN CH ZH, et al.. Design and optimization of carbon fiber frameword for space camera[J]. Opt. Precision Eng., 2017, 25(3):697-705.(in Chinese)
李威, 刘宏伟, 郭权锋, 等.空间相机主次镜间的薄壁筒和支杆组合支撑结构[J].光学 精密工程, 2010, 18(12):2633-2641.
LI W, LIU H W, GUO Q F, et al.. Combined supporting structure of thin wall joint cylinder and supporting bar between primary mirror and second mirror in space camera[J]. Opt. Precision Eng., 2010, 18(12):2633-2641.(in Chinese)
史朝龙, 孙红胜, 王加朋, 等.光谱可调谐式高分辨率光学载荷校准技术[J].红外与激光工程, 2016, 45(11):197-202.
SHI CH L, SUN H SH, WANG J P, et al.. Calibration technology for high-resolution optical load by spectrally tunable source[J]. Infrared and Laser Engineering, 2016, 45(11):197-202.(in Chinese)
韩春杨, 徐振邦, 吴清文, 等.大型光学载荷次镜调整机构优化设计及误差分配[J].光学 精密工程, 2016, 24(5):1093-1103.
HAN CH Y, XU ZH B, WU Q W, et al.. Optimization design and error distribution for secondary mirror adjusting mechanism of large optical payload[J]. Opt. Precision Eng., 2016, 24(5):1093-1103.(in Chinese)
齐乃明, 张文辉, 高九州, 等.空间微重力环境地面模拟试验方法综述[J].航天控制, 2011, 29(3):95-100.
QI N M, ZHANG W H, GAO J ZH, et al.. The Primary discussion for the groung simulation system of spatial micrograviy[J]. Aerospace Control, 2011, 29(3):95-100.(in Chinese)
李煜琦, 邵珠峰, 田斯慧, 等.基于吊丝配重的空间机械臂零重力模拟装置卸载率分析及评价[J].机器人, 2016, 38(3):293-300.
LI Y Q, SHAO ZH F, TIAN S H, et al.. Analysis and evaluation on unloading ratio of zero-g simulation device of space manipulator based on suspension system[J]. ROBOT, 2016, 38(3):293-300.(in Chinese)
高海波, 郝峰, 邓宗全, 等.空间机械臂收拢状态零重力模拟[J].机器人, 2011, 33(1):9-15.
GAO H B, HAO F, DENG Z Q, et al.. Zero-g simulation of space manipulator in furled status[J]. ROBOT, 2011, 33(1):9-15.(in Chinese)
李玲, 赵野.大口径空间相机地面装调时的重力卸载方法[J].航天返回与遥感, 2016, 37(5):69-76.
LI L, ZHAO Y. A gravity unloading method of on-ground alignment for large aperture remote sensor[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(5):69-76.(in Chinese)
OLYVIA H, DAVID K, PAUL J, et al .. Gravity-offloading system for large-displacement ground testing of spacecraft mechanisms[C]. Proceedings of the 40 th Aerospace Mechanisms Symposium , NASA Kennedy Space Center , May 12-14, 2010: 119-132. http://esmats.eu/amspapers/pastpapers/pdfs/2010/han.pdf
KRISHAN K G, MANOAH S M. A review on passive gravity compensation[J]. International Conference on Electronics, Communication and Aerospace Technology ICECA 2017, IEEE, 2017:184-189.
GIULIO S, MATTEO M, ALESSANDRO S, et al.. Passive and active gravity-compensation of LIGHTarm, an exoskeleton for the upper-limb rehabilitation[J]. 2015 IEEE International Conference on Rehabilitation Robotics(ICORR), 2015:440-445.
从强.空间机构地面重力补偿设备跟踪研究[J].航天器环境工程, 2012, 29(1):92-99.
CONG Q. An investigation into gravity compensation equipment for space mechanisms[J]. Spacecraft Environment Engineering, 2012, 29(1):92-99.(in Chinese)
杨巧龙, 闫泽红, 任守志, 等.套筒驱动的大型可展收柔性太阳翼地面展开重力卸载研究[J].载人航天, 2017, 23(8):536-545.
YANG Q L, YAN Z H, REN SH ZH, et al.. Study on gravity compensation in ground deployment tests of large retractable flexible solar array driven by telescopic boom[J]. Manned Spacefligh, 2017, 23(8):536-545.(in Chinese)
JASON R N, STEVEN P C, KURT G C, et al .. Characterization of partial-gravity analog environments for extravehicular activity suit testing[R]. National Aeronautics and Space Administration , Johnson Space Center , Houston , TX 77058, 2010(12): 1-45.
ZHANG H, KOU B Q, Y X, et al.. Modeling and Analysis of a New Cylindrical Magnetic Levitation Gravity Compensator With Low Stiffness for the 6-DOF Fine Stage[J]. IEEE Transactions On Industrial Electronics, 2015, 62(6):3629-3639.
DONELAN J M, KRAM R. Exploring dynamic similarity in human running using simulated reduced gravity[J]. J.Exp Biol, 2000, 203(16):2405-2415.
BROWN H B, DOLAN J M. A novel gravity compensation system for space robots[C]. A Novel Gravity Compensation System for Space Robots , 1993, 11. https://www.ri.cmu.edu/publications/a-novel-gravity-compensation-system-for-space-robots/
0
浏览量
449
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构